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Abstract 

Future models of the thermosphere-ionosphere-magnetosphere system will 

require near real-time assimilation of ionospheric parameters to specify and forecast these 

regions. One of the current sensors that will be used in the GAIM model is the DMSP 

SSIES. Knowledge of the SSIES's reliability and data characteristics is key to using the 

data when relying on automated processes to ingest the data. To validate the DMSP 

value, the DMSP-measured density is compared to ground-based ISR measurements from 

solar minimum to solar maximum. The DMSP data are compared to data from the ISRs 

located at the Millstone Hill Observatory in Massachusetts and Sondrestrom in 

Greenland. The DMSP was found to measure densities 10 percent - 20 percent lower 

than Millstone Hill and 90 percent lower then Sondrestrom, however both were within 

the uncertainties of the ISR measurements. The DMSP data over Millstone Hill were 

analyzed for variability. After de-trending the data, the variability was found to range 

from 0.2 percent in geomagnetically quiescent periods to over 20 percent during active 

periods. 

IV 
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VALIDATION AND CHARACTERIZATION 

OF IONOSPHERIC DENSITIES 

MEASURED BY DMSP 

I. Introduction 

1.1 Problem Statement 

The next generation space environment models will combine physics-based 

algorithms with near real-time data from both ground- and space-based sensors. To date, 

such data assimilation has been accomplished on a very limited basis. This effort will 

require an in-depth knowledge of the data characteristics. Characterization of the data 

from the various sensor systems — such as the Defense Meteorological Satellite 

Program's (DMSP) Topside Ionosphere Plasma Monitor (SSIES) -- will be required to 

accurately initialize the physical models. Also, since much of the data will be ingested 

automatically with a minimal amount of human intervention, characterization of the 

expected error—as well as the dynamic range away from climatology during geomagnetic 

storm conditions—will be required. 
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1.2 Research Objectives 

There are two distinct parts of this research. The first will essentially expand the 

previous work of Sultan and Rich (2000) that compared DMSP-measured ionospheric 

densities against that measured by the Incoherent Scatter Radar (ISR) located at the 

Millstone Hill Observatory, a geomagnetic mid-latitude station. Their study looked at 

DMSP satellites F08, F09, and F10 during 1989 and 1991, near the maximum of Solar 

Cycle 22. They found the SSIES measured ionospheric densities within the advertised 10 

percent error of the instruments, compared to the ISR. This research will extend the 

comparison to Millstone Hill covering the period from before solar minimum (solar 

minimum is taken to be winter 1996) to solar maximum (summer 2000) of Solar Cycle 

23, the current solar cycle. Also it will briefly compare the SSIES densities against data 

from the Sondrestrom ISR located at higher latitude in the auroral oval during the day 

and the polar cap region at night. 

The second objective of the research will examine over 1100 sets of data, each 

representing one orbit from five DMSP satellites and perform initial instrument error 

estimates. The Global Assimilation of Ionospheric Measurements (GAIM) project will 

initially require these error estimates for the SSIES data to be specified in five-degree 

latitude increments for the entire globe, further delineated into whether the sensor is 

sunlit or eclipsed. Additional grouping of the data to determine whether the satellite is 

poleward of the equatorward auroral boundary or not will help in this characterization 

effort. 
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1.3 Air Force Impact 

The Air Force, the entire Department of Defense, and many civilian interests are 

affected by the evolving structure of the ionosphere. Ionospheric irregularities can distort 

the propagation of trans-ionospheric radio waves. Beyond line-of-site communications 

and over-the-horizon radar rely on the ionospheric plasma to refract and reflect the long 

wavelength radio waves. Irregularities in the plasma affect the reliability of HF and 

satellite communication, two systems critical to today's war-fighters. Also, the 

composition and dynamics of the magnetosphere-ionosphere system are intimately linked 

to the well being of personnel conducting manned space flight, not to mention the 

integrity and operation of the space vehicles themselves. Changes in the neutral density 

and extent of the ionosphere-thermosphere system can cause drag on satellites that can 

shorten their operational lifetime and change their expected location, whereas decreases 

in the plasma density even at DMSP altitudes can lead to significant spacecraft charging. 

Also, currents in the ionosphere cause unexpected, magnetically induced currents in 

ground-based power grids, which can lead to unexpected fluctuations in power grids, and 

possibly the entire grid shutting down. 

This initial effort to characterize DMSP measurements will be integrated into 

future real-time specification and forecasting of the ionosphere. An accurate and timely 

model of the current conditions from satellite and other measurements will help operators 

predict and exploit ionospherically induced effects on friendly as well as enemy systems. 



www.manaraa.com

II. Background 

2.1 The Ionosphere 

2.1.1 General Description. The ionosphere is a weakly ionized plasma that 

extends from approximately 100 km to 1000 km, and is composed of ionized and neutral 

atoms, molecules, and the associated free electrons. As with most plasmas, the 

ionosphere is quasi-neutral, so the total number of positive ions of all species is nearly 

equal to the sum of electrons and negative ions. The ionosphere is created principally via 

photoionization with some additional ionization attributable to high-energy particle 

precipitation. It is maintained by a complex interplay of chemistry and transport. 

The ionosphere was initially discovered at the turn of the 20th century shortly after 

the advent of radio communications. The existence of a charged layer in the atmosphere 

was proposed to explain the propagation of radio waves across the Atlantic Ocean. It was 

proposed independently by Heavyside and Kennelly to explain how radio waves could be 

received beyond the range predicted by refraction through the earth's atmosphere. 

Hence, from its earliest classification up through the 1960s, it was referred to as the 

Kennelly-Heavyside layer. Experimentation by Appleton and Barnett proved the 

existence of this layer. (Evans, 1975) 

Further experiments over the years brought about the discovery of several ionized 

layers in the atmosphere which in modern times are designated the D, E, Fi, and F2 

layers. Each layer is characterized by the ionization source, the predominant ions, and 

the chemistry involved in these processes. See Appendix C for details of the composition 

and structure of the lower ionospheric layers. 
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Figure 1: Vertical profile of the Ionosphere (From Kivelson and Russell, 1996) 

The topside of the ionosphere is defined as the region above the F2 peak where 0+ 

dominates, which can extend 600 km to 1500 km above the F2 peak (Schunk and Nagy, 

2000:333). Above this K1" is predominant, and the region is termed the protonosphere or 

plasmasphere. When sufficient numbers of 0+ exist (low altitudes), chemical equilibrium 

is the predominant process, and the reversible charge exchange reaction 

0++H<r*H++0 (1) 

controls the relative density of 0+ and Ff\ FT density can be obtained by the equation 

(Schunk and Nagy, 2000:334): 

r      1 [0+][H] 
\H

+l=i.i3*L r
A\ 

L    J [o] 
(2) 

where the coefficient represents the ratio of the forward to reverse reaction rates. Given 

that oxygen is sixteen times heavier than hydrogen, 0+ decreases exponentially more 
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rapidly with altitude than hydrogen. As a result, H* increases exponentially with altitude 

until 0+ is no longer a major constituent. Diffusive equilibrium controls the topside 

above this level, when the decreasing H* pressure in the plasmasphere helps decrease 

both the density and pressure of ionospheric H+, especially at high latitudes. 

Thermal diffusion can be important when the density structure is controlled by 

diffusive equilibrium. The transfer of heat energy between the various constituents when 

there are large temperature gradients helps separate the light and heavy ions. The 0+ 

move up in altitude toward higher energy and the light H* ions downward toward cooler 

temperatures. This transport of 0+ can have the effect of raising the transition height 

from heavy to light ions several hundred kilometers (Schunk and Nagy, 2000:335). 

Above the plasmasphere is the magnetosphere. The magnetosphere is the region 

where the earth's magnetic field interacts with the Interplanetary Magnetic Field (IMF) 

originating from the sun. The magnetosphere effectively shields the earth from the direct 

effects of the solar wind and traps some of the high-energy solar wind plasma. The 

ionosphere connects to the magnetosphere through the magnetic and electric fields. At 

the earth's magnetic dipole, the magnetosphere and plasmasphere interact more readily 

with the upper reaches of the atmosphere. The cusp region occurs 10 degrees to 15 

degrees south of the magnetic pole on the dayside and in this region the ionosphere is 

linked to the magnetosphere and IMF and high-energy particles can penetrate to the 

atmosphere. 

2.1.2 Global Structure of the Ionosphere. Much of the large-scale features of 

the ionosphere occur when the z-component of the IMF is directed southward (Schunk 

and Nagy 2000:393). Figure 2 shows the relationship of features such as polar holes 
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(dashed line in midnight sector poleward of 70 degrees A), ionization troughs (light gray 

shading on the nightside), and the auroral oval, (dark shaded circle) plotted against 

magnetic local time (MLT) and invariant latitude (A).  The ionospheric current systems, 

the field-aligned currents, and particle precipitation interact to drive much of the 

dynamics that creates and sustains these features. 

Figure 2: Structure of the high-latitude ionosphere (Schunk and Nagy, 2000) 

Most of the structure has been characterized for the D, E, Fi, and F2 layers. 

Structure can also be discerned in the topside, although sometimes not as readily or using 

the same criteria. Figure 3 shows the transition from 0+ dominance to H+ dominance 
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Figure 4: DMSP density plot showing He+-predominance from 54° to 58° A. 

frequently occurs below the DMSP altitude of 840 km. According to Greenspan et al. 

(1994), the topside ionosphere displays considerable variability between dawn and dusk 

sectors that vary depending on longitude and magnetic activity, but has marked day-to- 

day consistency. Also, the E x B drift and neutral wind flow allows He+ to become 

dominant in some regions of the topside, mid-latitude ionosphere. Figure 4 illustrates 

just such an occurrence found during our research. 

The mid-latitude ionosphere can vary on several time scales — daily, seasonal, and 

solar cycle. The diurnal variation below the F2 peak is ascribed to the decrease in the 

solar zenith angle during the day that increases the ionization rate resulting in a higher 

plasma density around noon. On the topside, this maximum is later in the afternoon, due 

in part to diffusion, flow between the hemispheres, and effects of the neutral wind. The 

seasonal trend has the maximum during the winter at F2 and below with less marked 

variation in the topside. The ratio 0:N2 increases in the winter due to the neutral 
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circulation that results in increased 0+ densities. The reduction of N2 available for 

equation (3) in Section 2.1.5 contributes to the increase in the total amount of 0+. This 

increase is due to a decrease in the 0+ loss rate and counterbalances the loss of ionization 

due to increased solar zenith angle. The net effect is higher densities in the winter 

(Schunk and Nagy, 2000). The solar cycle also influences the photoionization rate. 

During solar minimum, EUV flux is lower and so photoionization is lower, resulting in 

lower densities than during solar maximum. 

2.1.3 Ionospheric Electrodynamics. Since the ionosphere is a weakly ionized 

plasma, electric and magnetic fields play major roles in the transport of its charged 

constituents. The variations in these fields drive much of the dynamics of the ionosphere. 

In the topside, where neutral species become very rarified (although still far 

outnumbering the charged particles), the charged particles have fewer neutral particles to 

collide with, so are unobstructed in their response to the electric and magnetic fields and 

flow freely along the field lines. This unimpeded flow of charged particles along the 

magnetic field lines yields high field aligned conductivity - üQ- High Go results in several 

interesting consequences. First, this effect essentially short-circuits the ionosphere and 

allows no steady electric fields parallel to B. Secondly, since the currents can flow freely 

along B, magnetic field lines maintain an electric-equipotential. Third, Ex is almost 

independent of height in the ionosphere, so electric fields in the low levels of the 

ionosphere permeate into the magnetosphere, relating the ExB drift between all levels 

of the ionosphere (Rishbeth, 1988). 

The effects of the large Go link the ionosphere to the magnetosphere. This linking 

is especially important in the high latitude regions where the magnetic field lines are open 

10 
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into the magnetosphere. Changes in the magnetosphere driven by solar wind variations 

and other phenomena cause related changes in the ionosphere. The electric fields get 

mapped into the ionosphere, causing changes in the plasma flow. The connection also 

allows ionospheric plasma (both light and heavy) to escape into the magnetosphere, as 

well as allowing the higher-energy magnetospheric particles entry into the ionosphere. 

2.1.4 The Subauroral Ion Drift. Subauroral ion drifts (SAID) are latitudinally 

narrow regions of rapid westward ion drift located in the evening sector and centered on 

the equatorward edge of the diffuse aurora (Anderson et al, 1991). Figure 5 shows the 

signature of a SAID event from one pass of the Dynamics Explorer 2 satellite. A SAID 

can be loosely defined as a narrow band of westward plasma flow with a horizontal 

velocity exceeding 1000 m/s and generally located equatorward of the auroral zone at 

lower altitudes (around the F2 peak). The velocity profile is sharply peaked and could be 

a result of increased velocity and associated Joule heating of the ionosphere causing 

field-aligned plasma flows. The heating in turn can be attributed to enhanced electric 

fields caused by geomagnetic sub-storms that increase the thermal energy of the ions 

collisionally by driving them through the neutrals. The field-induced motion will also 

result in a local depletion in the total ion concentration. This depletion will enhance the 

mid-latitude trough and is another characteristic of a SAID event at F-region heights. 

This heating of the ions can be readily transferred to the electrons, so a local 

enhancement in Te might reasonable be expected. At DMSP altitudes, much of these 

effects can be mitigated or even unseen (Anderson et al, 1991). 
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Figure 5: Signature of SAID event from the Dynamics Explorer 2 satellite showing sudden 
increase in velocity, corresponding trough in ion densities, and peak in ion temperatures. (From 
Anderson etal., 1991) 

SAID has been shown to be sub-storm related. It has been observed as soon as 30 

minutes but never later than three hours after the sudden onset of a geomagnetic storm 

(Anderson et al., 1991). 

2.1.5 The Mid-Latitude Trough. The Mid-latitude Trough (MT) can be 

characterized as a decrease in Ne; however most researchers agree the MT is primarily 
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attributed to a depletion of the 0+ concentration. This results from a combination of 

chemical and transport processes. The relative importance of chemistry versus transport 

is driven by several factors: (1) Rate of photo-ionization driven by time of day and 

season, (2) Strength of electric fields mapped from the magnetosphere, and (3) Location 

in polar convective scheme (Schunk, et al., 1976). 

The chemistry that depletes the ionosphere of 0+ is driven by the following 

reactions: 

0++N2^N + NO+ (3) 

NO++e~^N + 0 (4) 

Equation (3) controls the rate of reaction in the topside ionosphere below the 

plasmapause when the concentration of N2 becomes low and the light ions start to 

dominate. Equation (4) controls the reaction rate for 0+ equilibrium during hours of 

darkness when there is a lack of photoelectrons to enable this process and low in the 

ionosphere when the electron concentration is low. 

Transport of 0+ from the topside, which contributes to MT formation, can occur 

for several reasons. First, plasma can convect across the polar cap and into the nightside, 

where photoionization ceases and ion density subsequently decreases. This is driven by 

E±xB drifts in the auroral zone. Secondly, the H* escapes via a process call the polar 

wind. This occurs as H+ travels along geomagnetic field lines and escape the ionosphere. 

The reduction in H+ limits the charge exchange reaction (equation (1)) and inhibits the 

creation of 0+ while still losing 0+ in the reverse reaction. The third transport process is 
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the thermospheric wind. This acts to slow the rate of decay by raising the F2 layer, but 

also acts to increase the amount of excited N2 through the trough, which aids the decay of 

0+ through equation (3) (Schunk, et al., 1976). Figure 6 illustrates a typical MT. 

Moffett and Quegan (1982) claim the community has agreed on the following 

characteristics of the MT: 

1. Primarily a night-side phenomenon, extending from the dusk to the dawn-side. 

Also observed in the noon sector. 

2. Regularly observed during winter and equinox. In summer, it is only 

observed near local midnight. 

3. Poleward edge is relatively steep (compared to equatorward edge) and lies just 

equatorward of the diffuse auroral precipitation boundary. 

4. Latitude of the trough decreases at night. 

5. Trough moves to lower latitudes during periods of increased magnetic 

activity. 

6. The solar cycle does not influence the occurrence and structure of the trough. 
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Figure 6: Mid-latitude trough (From Miller, 1970) 

Other potential characteristics of the MT do not have a consensus from the 

community. One is the ion drift velocity. In pre-midnight troughs, large westward 

velocities as well as some eastward drift have been observed. Post-midnight, the 

velocities generally match the rotation of the earth. Also, an increase in the ion 

temperature can be expected. A decrease of the available mass (0+) to absorb the flux of 

energy into a given volume of gas would result in a local increase in the temperature of 

the remaining constituents. An increase of the ion temperature would be reflected in the 

electron temperature. 

2.1.6 The Light Ion Trough. The Light Ion Trough (LIT) is characterized by a 

decrease in the densities of the light ions (ET1" and He+), with little or no change in the 

total electron density as seen in Figure 7. Clear signs of a LIT can be found during the 
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nighttime in all seasons and in the daytime sectors during the winter. It is seen in mid- 

latitude regions of the ionosphere, beginning near 60° magnetic latitude with its poleward 

edge at the diffuse auroral boundary. The LIT is more pronounced during nighttime and 

the dayside winter, while it is less well defined during summer and equinox daytime. 

The minimum will deepen and move equatorward during periods of geomagnetic activity, 

due mainly to the increase of plasmaspheric convection (Taylor, 1972). 

Figure 7: LIT demonstrated by isometric projection of H+ and Ni profiles observed near 0500 
LT between 22-27 September, 1969. Pairs of profiles are shown for the longitudes corresponding 
to each pass (Taylor, 1972). The orbits are from September 1969 at date/time of the orbits (a) 
23/1613-1706, (b) 23/1753-1846, (c) 22/2020-2112, (d) 22/2200-2252, (e) 22/2339-0031, (f) 
23/0115-0209, (g) 23/0256-0347, (h) 25/0442-0553, (i) 25/0621-0712, 0) 27/0807-0900, (k) 
27/0847-1053, (1) 25/1259-1352, and (m) 22/1318-1411. 
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2.1.7 The Aurora. The aurora is the manifestation of high-energy particles from 

the solar wind and magnetosphere being injected into the high latitude regions of the 

ionosphere via the dayside cusp and the magneto-tail on the nightside. The aurora 

generally forms an oval around the geomagnetic north and south poles. It extends 

latitudinally approximately 23 degrees on the nightside and 15 degrees on the dayside, 

fixed on a latitude-MLT grid, but is heavily dependent on geomagnetic activity (Bruzek 

and Durrant, 1977:190). 

While the aurora provides a "beautiful colour pattern," it has consequences in the 

structure and dynamics of the high-latitude ionosphere. The increased high-energy 

particle precipitation creates additional ionization, increasing local densities and 

transferring some of that energy to the ambient plasma. Also, the atoms and ions can 

become collisionally excited and — along with the optical wavelengths normally 

associated with the aurora — emit short-wavelength radiation (X-ray and EUV) as the 

species relax back to a lower energy state. The emitted radiation can produce additional 

photoionization. Because the auroral oval is relatively confined, the spatial scale of these 

phenomena is short, particularly in latitudinal extent. Ground-based measurement 

techniques may have trouble resolving this scale, especially high in the topside. 

2.2 Incoherent Scatter Radar 

Incoherent Scatter Radar (ISR) is based on properties of electron scattering 

referred to as Thompson Scattering, after J. J. Thompson, the discoverer of the electron. 

Several parameters are directly measurable by ISR to include electron density (Ne), 

electron temperature (Te), ion temperature (Tt), mass of species "i" (mi), plasma velocity, 
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and the relative motion of the ions and electrons. From these measurements, 

conductivities and the neutral wind are derivable (Hargreaves, 1992). 

Since the relatively high-density plasma at the base of the ionosphere will reflect 

the lower frequencies of the radio spectrum, the radar must have a sufficiently short 

wavelength to penetrate into the topside. To a second order approximation, the radar 

beam will propagate through the ionosphere without any reflection off the plasma (Evans, 

1975). However, the electrons in the ionosphere will reflect a small portion of the energy 

from the incident radar beam. High-power radars with large collectors are required to 

receive this weak return signal. Since the electrons are in motion, each electron will 

scatter the signal with many different phase shifts (incoherently), depending on the 

thermal motion of each individual electron. The amount of power received at the radar 

will then be sum of the individual reflections and be related to the number of electrons 

available to scatter the radar beam. On average, the scattering cross section per unit 

volume will be the radar cross section of the electron — <je — multiplied by the number 

density, N (Evans, 1969). The radar cross section of the electron is given as 

ae = An{re siny/)2 = 10"28 sin2 y/ m2 (5) 

where re is the classical electron radius: 

2 

2.82xl(T13m (6) 
e0mec

2 

and v/"is the angle between the incident electric field and a line to the receiver 

(polarization angle). Thus the area under the curve of returned power in the frequency 

domain in Figure 8 provides a straightforward indication of the number density. 
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Figure 8: The power spectrum of radio waves incoherently backscattered by the ionosphere 
assuming Te = Tt. Afi is the Doppler shift for ions approaching the radar at their mean thermal 

velocity V,-. X is the radar wavelength. (Evans, 1975) 

The scattering by the electrons is complicated by the fact that the ions feel a 

Coulomb attraction to the electrons, thus the return is not totally incoherent. The width 

of the returned spectrum determines the temperature of the electrons. The thermal 

motion of the electrons would induce a Doppler shift of the transmitted frequency, giving 

the return a Gaussian shape with a center to half-power width of 0.71 Afe, where 

4f> Sk0T B*</    |"Hz (7) 
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where A, is the radar wavelength in meters and kB is Boltzmann's constant (Evans, 1965). 

Since the electron motion is influenced by the much heavier ions, this returned spectrum 

is much narrower. The shape of the return in Figure 9 characterizes the ratio of the 

electron temperature to the ion temperature. As the electron temperature increases 

relative to the ion temperature, the thermal ion motion interferes less and less with the 

returned signal from the electrons, causing the peak to narrow and move toward larger Af. 
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Figure 9: The power spectrum of the incoherent scatter echoes when Te exceeds Tt by the ratio 
given. (Evans, 1975) 

Today's ISRs have relatively long wavelengths; for example, Arecibo Radio 

Observatory's primary wavelength is 70 cm (430 MHz). This is much greater than the 

Debye length of the plasma, which is on the order of 1 cm in the ionosphere. The Debye 

length—D—describes the distance away from a charged particle where the plasma 

effectively shields that particle from the influence of external fields. It is given by 
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D = 
rs0kBTei 
y 47tNe2 j 

meters (8) 

This results in the return measuring the density fluctuations in the plasma versus the 

individual electrons themselves (Evans, 1969). 

The Millstone Hill Observatory ISR is operated by the Massachusetts Institute of 

Technology as part of the Haystack Observatory Atmospheric Sciences group with major 

funding from the National Science Foundation (NSF). The facility consists of two 2.5 

MW, 440-MHz transmitters, a fully steerable 46-meter antenna, a zenith-directed 68- 

meter fixed antenna, and dedicated computer and database facilities. Its location at 

53.2°N magnetic (42.6°N geographic) latitude places it within range of the aurora and the 

sub-auroral region of the ionosphere much of the time, as well as being ideally located to 

study mid-latitude phenomena (Erickson, 1995). 

SRI International, Inc. is an independent corporation research that works closely 

with Stanford University, located in Menlo Park, CA. SRI operates the Sondrestrom 

radar under contact to the NSF and in cooperation with Denmark's Meteorology Institute. 

The radar is located near Kangerlussuaq, Greenland, and was moved there in 1983 from 

Chatanika Alaska, where it had operated since 1971. It is a 32-meter, fully steerable, 

parabolic dish, with accompanying low-noise amplifier, receivers, and digital signal 

processing computers, operated by an on-site staff and managed by the staff and scientists 

in Menlo Park. The site in Greenland places the radar in position to measure the auroral 

and polar cap ionosphere much of the time. Also, the earth's dipole field intersects the 

surface perpendicularly in this region, so Sondrestrom is well suited to take 

measurements parallel to the B field. 
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Table 1: ISR Radar Locations 

ISR Site Geographic 
Latitude 

Geographic 
Longitude 

Geomagnetic 
Latitude 

Arecibo 18.3°N 66.7°W 30.0°N 

Jicamarca 11.9°S 76.9°W 1.1°N 

Millstone Hill 42.6°N 71.5°W 53.2°N 

Sondrestrom 67.0°N 51.0°W 71.0°N 

Sondrestrom Up B 
(@ 850 km) 

65.9°N 48.8°W 

iteif Radars  w. 

kAltaTr 

Existing Roc (I ft fes 
New I lift fa-tl^es. 

lUlcgmarca 
Figure 10: Map of ISR sites worldwide (SRI, Inc., 2000) 
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2.3 POLITE Campaigns 

The Plasmaspheric Observation of Light Ions in the Topside and Exosphere 

(POLITE) Campaigns are coordinated efforts between the incoherent scatter radars in the 

chain (Erickson, 1997). These campaigns are designed to pursue science on topics that 

include light ion spatial variations, storm-time effects on ions and neutrals, charge 

exchange physics in the topside, H concentration variations, and improving the MSIS- 

modeled H concentrations. The radars are configured to measure the extremely weak 

returns from the topside of the ionosphere. The lower electron concentrations in this 

Table 2: POLITE Campaign Dates 

Campaign Date Julian Date 

POLITE 1 13 - 14 Feb 1996 96044 - 96045 

POLITE 2 11-14 November 1996 96316-96319 

POLITE 3 3-6 June 1997 97154-97157 

POLITE 4 2-4 December 1997 97336 - 97338 

POLITE 5 26-28 May 1998 98146-98148 

POLITE 6 22 - 25 November 1998 98326 - 98329 

POLITE 7 8-9 October 1999 99281-99282 

POLITE 8 9-10 December 1999 99343 - 99344 

POLITE 9 6-7 January 2000 00006-00007 

POLITE 10 1 - 3 July 2000 00183-00185 

23 



www.manaraa.com

region result in a lower signal strength. This requires a longer integration of the radar 

return to have sufficient signal to derive the parameters. As a result of the longer 

integration time, problems develop from larger amount of noise in the return, thus 

increasing the uncertainty of the measurements. 

The POLITE campaigns were ideal for this characterization effort since the radars 

were set to a mode that optimizes the returns from the topside. Conventional modes of 

the ISR generally result in returns that are unreliable above 700 km and require extensive 

extrapolation to derive values at DMSP altitude. 

2.4 Defense Meteorological Satellite Program (DMSP) 

The DMSP satellites are low-orbit (840 - 860 km), high inclination (98 degrees) 

polar satellites that complete one orbit every 101 minutes. This orbit allows the satellites 

to cover approximately the same local time over the earth's surface on each node 

(ascending or descending). The time of the node indicates the local time at the equator 

when the satellite is directly overhead. The satellites are launched into a nominal orbit, 

but conditions during the launch and placing the satellites in orbit determines the actual 

time of the overpass. Also, since the earth is not a perfect sphere and does not follow a 

perfectly elliptical path around the sun, variations occur in the orbits.   Table 3 lists the 

nominal and actual time of each orbit. Figure 11 shows a schematic of the satellites' 

nominal locations relative to magnetic local time. 

24 



www.manaraa.com

Table 3: Local Times of DMSP Overpass 

Satellite Nominal LT of Overpass Actual LT of Overpass 

Fll 1730 / 0530 1919/0719 

F12 2030/0830 2049 / 0849 

F13 1730 / 0530 1711/0511 

F14 2030 / 0830 2035 / 0835 

F15 2110/0910 2110/0910 

The first entry is the ascending node. (Rich, 2000) 

Figure 11: Location of Nominal DMSP Ascending/Descending Nodes 

The DMSP's primary mission is to monitor terrestrial weather through their 

Optical Line Scan (OLS) sensors that image the earth's atmosphere in both the visible 

and infrared bands. Its secondary mission is to provide quantitative in-situ measurement 
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of the thermal plasma environment (low energy electrons and ions) in which it orbits. To 

accomplish this, it is equipped with the Topside Ionospheric Plasma Monitor (Special 

Sensor for thermal Ions, Electrons, and their Spatial variations or SSIES). The SSE3S 

consists of a suite of instruments designed to measure the ion and electron density, 

temperature, density fluctuations, and velocity. Figure 12 shows the location of the 

SSEES instruments on the DMSP spacecraft.The Electron Sensor (EP) is a Langmuir 

probe that measures thermal electrons in the temperature range of 500 - 8000 K and in the 

density range from 102 to 106 electrons/cm3. It makes one complete measurement cycle 

each eight seconds consisting of four seconds of increasing bias voltages and four 

seconds of decreasing voltages. Each four seconds of data yield one measurement of 

electron temperature and density (Rich, 1994). Measurement of the thermal electrons 

from the ambient plasma is complicated by the presence of photoelectrons generated by 

the spacecraft and the sensor itself. Rich (private communication, 9 June 2000) says, 

"To get the density from the EP sensor it is necessary to know the electrostatic potential 

between the sensor and the plasma is zero. If there is an error of +/- 0.2 Volts (which is 

quite possible), then the electron density derived from the EP data is in error by ± 50 

percent or slightly more." For this reason, the EP values were not used in this study. 

The ion sensors are housed in one unit and are situated so the sensors point in the 

direction of spacecraft travel. The design of each of the ion sensors is based on a Faraday 

cup, where the ions flow through an aperture that isolates the plasma from the collector 

surface. The measurements are taken as voltages induced on the collector (Rich, 1994). 

This group consists of the Total Ion Density Sensor (Scintillation Meter), the Ion 

Retarding Potential Analyzer, and the Duct Meter. These sensors are held at the ambient 
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plasma potential through the Sensor Potential (SENPOT) which measures the potential of 

the plasma relative to the spacecraft and adjusts the ion sensors so they measure a flow of 

ions relatively undisturbed by electric fields generated by potential differences between 

spacecraft and the ambient plasma. 

MAGNETOMETER 
BOOM 

SOLAR 
ARRAY 
BOOM 

DMSP/S15 SSIES 
MORNING ASCENDING       ELECTRON 
NODE CONFIGURATION PROBE 

i 
MICROWAVE 
IMAGER 

PERCISIOH MOUNTING PLATFORM 

S/C COORDINATES 

Figure 12: SSIES/SSIES2 sensors mounted on the DMSP spacecraft. (Rich, 1994) 
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Figure 13: External view of the SSIES2 ion sensors with the aperture array and the electron 
sensor on the end of its boom. (Rich, 1994) 

The Total Ion Trap (SM) is the simplest of the ion density instruments of the 

SSIES series. It consists of a very wide aperture with a minimum of grids between the 

aperture and collector plate (Rich, 1994). Its primary use is to measure density 

variations, however it also measures the total ion density. It takes 24 measurements per 

second and characterizes them into one of five ranges. The SM has an operational range 

of 102-106 ions/cm3. Values above this range will cause the sensor to saturate. The SM 

operates on a 16 second cycle in a quiet ionosphere at which point a flag is set to indicate 

which of the five ranges the measurement is taken. A new range is set if another 16 

seconds elapse or the measurements exceed that range. If the latter occurs within the first 

second of the cycle, density data output ceases until the next cycle starts; if it happens 

after one second, density data will not be output until the next odd cycle-count. 
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Figure 14: Total Ion Density Sensor (Scintillation Meter). (Rich, 1994) 

The Ion Retarding Potential Analyzer (RPA) operates by holding the aperture as 

close to the plasma potential as possible, creating field lines in front of the aperture that 

are parallel to the surface of the instrument. This allows the ions to enter the aperture 

without being deflected, and without forcing additional ions into the instrument. This 

results in the RPA on the DMSP being able to measure lower densities than similar 

instruments on other spacecraft. The processing algorithms assume the ions follow a 

Maxwellian distribution, which allows determination of ion density, as well as ion 

composition, ion temperature, and average species velocity (Rich, 1994). 
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Figure 15: Retarding Potential Analyzer (Rich, 1994) 

Another sensor system on the DMSP that measures the spacecraft environment is 

the Precipitating Energetic Particle Spectrometer, called the SS J4. The sensor measures 

high-energy particles (30 eV to 30 keV) that cross the satellite's path on a nearly vertical 

trajectory (Rich, 1994). This system is used for detecting precipitating particles and can 

be used to determine whether the satellite is in the auroral zone. Gussenhaven, et al. 

(1982) used these measurements to calculate regression statistics that determine The Air 

Force Research Laboratory Auroral Boundary Index (Equivalent Midnight Equatorward 

Boundary Index — EQB). Appendix D outlines the process. 

The current family of DMSP satellites is unable to downlink the SSIES 

measurements of the plasma in near real time. Future spacecraft will need to have this 

ability for the data to be the most useful to modelers. As the DMSP program moves 
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under NOAA's (National Oceanographic and Atmospheric Administration) NPOES 

(National Polar Orbiting Environmental Satellite) program, real-time telemetry will be 

crucial to using plasma measurements in a global specification and forecast model. 

2.5 GAIM Proposal 

The Global Assimilation of Ionospheric Measurements (GAIM) proposal is a 

Multi-University Research Initiative (MURI) spear-headed by Utah State University's 

Center for Atmospheric and Space Sciences with Dr. Robert Schunk as Principal 

Investigator. The University of Texas at Dallas (UTD), the University of Colorado at 

Boulder (CU), and the University of Washington (UW) join Utah State in this MURI 

proposal. 

The goal of the GAIM proposal is to generate a physics-based model of the space 

environment that will assimilate both space- and ground-based measurements of the 

ionosphere in near real-time. The proposed method is to use Kaiman filtering. This 

technique incorporates an initial estimate of the error in the various measurements and 

models used. The procedure then applies a dynamic model to advance one time step, 

incorporating the expected errors. Because of the size and complexities of determining 

the model error, the sensor error is analyzed only for its dominant structures. This error 

approximation is applied to a full, non-linear forecast at each time step (Schunk and 

Sojka, 1999). 

GAIM must have a reasonable estimate for the error in the data being assimilated. 

Prior to incorporation into the model, the data must be analyzed to determine the typical 

variability of the measurements and the random noise associated with the measurements 
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received from the instruments. It should be noted that this instrumental error could have 

significant variability depending on factors such as the season, latitude, location in the 

solar cycle, and storm activity (Sojka, private communication, 15 November 2000). 

Once a good estimate of the error is found, this is incorporated into the automated 

assimilation step of the Kaiman filter. This estimate is used to ensure the data the model 

receives are reasonable (within expected range and variations) and to account for the 

expected error before the model receives it. Once this is accomplished, data can be 

ingested and assimilated by the GAIM routine with a minimal of human intervention. 
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III. Methodology 

3.1 Prior Research 

Sultan and Rich (2000) compared DMSP-measured plasma ion density during 

solar maximum against data from Millstone Hill. This dataset was mined from the 

Millstone Hill archives and consisted of short pulse-length (640 u.sec) returns with a 

vertical resolution of 48 km. These generally only extended to 700 - 750 km and were 

extrapolated to DMSP altitude. Two sequential returns were required within ±30 minutes 

of the overpass time for the conjunction to be used. All the returns within the ±30 

minutes were used to arrive at an average value for the radar, provided the scatter of the 

radar returns were not too great. Cases with too much scatter were discarded. 

The DMSP density data were averaged over a five-degree circle around the site. 

Instances where the gradient in the SSIES density was too great were discarded. 

According to Sultan and Rich (2000), this happened most often during geomagnetic 

disturbances. 

The result of this research was that the DMSP SSIES system measured the 

ionospheric plasma to within nine percent of the ISR-measured density. This was within 

the 10 percent error published for the SSIES system (Sultan and Rich, 2000). However, 

no attempt was made to characterize the error in either the DMSP or ISR data in the 

study. 

Over the span of the DMSP lifetime, numerous researchers have studied the 

ionosphere using the SSIES data. Greenspan et al. (1994) used F8 DMSP measurements 

to classify the topside ionosphere during solar minimum. West and Heelis (1996) used 
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FIO ion composition data to characterize longitudinal variation in the topside equatorial 

ionosphere. The community accepts these data as representative of the ionosphere, but 

until the Sultan and Rich study, no formal comparison had been made to the ISRs to 

detail the differences. 

3.2 Description of ISR data 

ISR data were requested from all four of the Western Hemisphere ISRs—Arecibo, 

Jicamarca, Millstone Hill, and Sondrestrom. Data were available for the POLITE 

campaigns for Millstone Hill and Sondrestrom (see Table 2). 

3.2.1 Millstone Hill. The Millstone Hill ISR data used were taken during the 

POLITE windows, however the data did not cover the entire period. The radar 

observations would normally start around sunrise on the first day of the campaign (12 - 

16 UT) and conclude around sunset on the last day of the campaign. This precluded a 

number of possible DMSP overpasses and limited the number of cases for comparison. 

Only data from the zenith radar were used to avoid the necessity to correct for the 

displacement of the beam/satellite conjunction from overhead of the radar location. The 

returns were analyzed using a two-ion fit (H+ and 0+) versus a three-ion fit (which 

includes He+) due to an inordinate increase of required processing. The difference in the 

two methods should be practically indistinguishable (Erickson, private communication, 

11 September, 2000). 

Millstone Hill operated in three main modes of its zenith antenna. For part of the 

time, it operated at a pulse length of 410 fisec, which is one of its normal operating 

modes (the other being 640 jisec). This mode mapped the structure of the lower 

ionosphere, which helped determine the overall state of the ionosphere. It returned data 
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in bins separated vertically by 30 km. The short pulse length provided the finest 

resolution of Millstone Hill data available, however this did not allow returns from 

DMSP altitudes. This pulse length generally did not reach above 750 km. 

Millstone Hill also used longer pulse lengths of 1000 jxsec and 2000 ^isec during 

the POLITE campaigns that generated vertical resolutions of 75 km and 150 km, 

respectively. This provided measurements to altitudes well over 1000 km. While the 

resolution was not ideal, the return was integrated over a larger vertical extent providing 

a vertically averaged value useful in this study. Table 4 describes Millstone Hill's data. 

Parameters with an asterisk (*) were used to compare the ISR to the SSIES density. 

Table 4: Millstone Hill Data Description 

Parameter Description Parameter Description 
UTH* Time past 0000 UT 

on first day of 
campaign 

SNP3 Signal to noise ratio 

GDALT* Altitude POPL* LoglO uncorrected 
electron density 

AZM Mean azimuth angle DPOPL* Error LoglO 
uncorrected electron 
density 

ELM Elevation Angle NEL* LoglO corrected 
electron density 

GDLAT Geodetic latitude of 
measurement 

Ti* Ion temperature 

GLON Geodetic longitude 
of measurement 

DTi* Error ion 
temperature 

PL Pulse length Te* Electron 
temperature 

VO Line of sight ion 
velocity 

DTe* Error electron 
temperature 

DVO Error line of sight 
velocity 

PH+ Composition 
[H+]/Ne 

DPH+ Error Composition 
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The corrected electron density (NEL) was derived from the following equation: 

NEL= CS * POPL * (1+—) (9) 
Ti 

where NEL is the corrected electron density, POPL in the uncorrected electron density, Te 

is electron temperature and 7, is ion temperature. CS is a system parameter that accounts 

for the radar wavelength and is taken to be a constant. This is similar to the corrected 

electron density equation given in the CEDAR Database Catalogue (1998) 

~ uncorrected 
(10) 

a2 = 7.654x10s Te 

A2N 

where 

■3 

N = true electron density (m") 

Te = electron temperature (K) 

Ti = ion temperature (K) and 

X = radar wavelength (m). 

In the case where a2 «: 1, CS -> 0.5. 

The Millstone Hill data did not contain an uncertainty in the corrected density 

value. Erickson (private communication, September 2000) indicated that standard error 

propagation could be used to determine an uncertainty value. Using a "worst case" 

approach as defined by Taylor (1982), the upper bound of the error is given as 

Sq=^LSx+^Sy+^Sz (11) 
ox dy oz 

36 



www.manaraa.com

and assuming that all three measurements are independent, a differential of equation (9) 

was used, which resulted in 

Te^ DTe 
DNEL = CS* (DPOPL * (1 + —) +POPL * 

Ti Ti 
+ POPL 

Ti2 
DTi) (12) 

This method was used to determine the uncertainty for all the Millstone Hill corrected 

densities when all parameters were available. 

For the case studies, the following, lower bound error propagation equation from 

Taylor (1982) was used: 

(13) 

which resulted in 

DNEL = CS*J\ DPOPL (14) 

The values were then compared to the original uncertainty estimate to contrast the two 

different methods. 

3.2.2 Sondrestrom. The ISR data from Sondrestrom consisted of a single 

density profile from their steerable antenna with an associated uncertainty. The radar 

used a 450-nsec pulse length and was integrated over 10 minutes to attempt to get 

sufficient signal to measure the topside ionosphere. The antenna was pointed parallel to 

the earth's magnetic field line which intersects near-perpendicularly with the surface at 

that latitude, called "up B." To measure "up B" the antenna is elevated to approximately 

80 degrees (with 90 degrees being vertical) and to 141 degrees azimuth (with 0 degrees 
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being north). These returns, at best, extended to 840 km, with much of the topside data 

either having exceedingly high uncertainties or being missing altogether. 

3.3 Description of DMSP Data 

UTD provided the DMSP data. This group designed and built the SSIES sensors 

for the DMSP. They receive their data monthly from AFRL, who archives all the data 

telemetered from the satellites. See Table 5 for a description of the DMSP data provided. 

The data initially contained the velocity components (except for POLITE 10 and Fl 1 

data) and later contained Sensor Potential (SENPOT) and Solar Zenith Angle (SZA) to 

help determine when the satellite was sunlit. 

Table 5: DMSP Data Description 

Parameter Description Parameter Description 

Time Seconds alt Spacecraft Altitude 
Vx m/s frach Fraction H+ 

Vy m/s frache Fraction He+ 

Vz m/s fraco Fraction 0+ 

density cm-3 Ti Ion Temperature (K) 
MLT Magnetic Local Time Te Electron Temperature (K) 
MLAT Magnetic Latitude SZA Solar Zenith Angle 
glong Geographic Longitude SENPOT Sensor Potential 
glat Geographic Latitude 

Vx was derived from the RPA. According to Hairston (private communication, 

11 December 2000), coordinates for the velocity vary from those quoted by Rich (1994). 

In these data, +Vx is in the direction of spacecraft travel, +Vz is vertically directed away 

from the earth's center, and +Vy is a horizontal flow that points to the left of the 

spacecraft's path. In general, this has +Vy pointing west during an ascending node and 

east during a descending node. Since the DMSP orbit is nearly circular, Vx represents a 
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horizontal flow as well. Density fractions of 0+, H4", and He+ are also derived from the 

RPA. This analysis has known problems that result in the reported constituent 

concentration going to zero when it decreases to less than eight percent of the total 

density (Hairston, private communication, 23 August 2000). 

The density was taken from the SM, which samples the plasma environment 24 

times per second. These values can also be derived from the RPA, but require 

considerably more processing to extract. The SM provides a straightforward number 

density measurement and should be unaffected in its range by the composition. If mass 

densities were needed, a more robust routine analyzing the RPA output would have been 

required. 

The DMSP/SSIES data files start when the satellite crossed the geographic 

equator during the ascending node, and continued for one orbit, covering approximately 

101 minutes. This translates to the satellite coving a little over three-and-a-half degrees 

latitude every minute. The data were averaged into four-second bins; so one orbit 

generated roughly 1500 data points. Figure 16 shows how this averaging creates a 

marked smoothing in the data, practically eliminating any indication of measurement 

error, although it does allow the physical structure of the ionosphere to be evident 

without much noise. 

AFRL and UTD have found several problems with the various DMSP sensors. 

These problems range from systematic problems that removed the satellite from service, 

to temporary problems that eventually resolved themselves. The following list details the 
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Figure 16: Example of one complete DMSP orbit, starting at the equator on the ascending node. 

DMSP sensor problems that impacted this study: 

1. F14 RPA derived-data were unreliable from September 1999 to January 2000, 

with recurrences in July 2000. This seems to be tied to a SENPOT problem. 

2. F12 SM density measurement was inaccurate after the satellite left the auroral 

oval in the morning-side, descending node in the Northern Hemisphere winter. 

This was clearly evident during POLITE 1 and 2, but corrected itself during later 

orbits. This was attributed to 0+ composition being less than 50 percent of the 

total ion density. 

3. F13 electron temperatures -1000 K too high while the satellite is sunlit. 

4. During POLITE 6, the DMSP were set in a mode to measure effects of a meteor 

shower on the satellites. During this period, no RPA was telemetered and the EP 

was set to only record once every 30 seconds. 

40 



www.manaraa.com

3.4 Comparison of ISR and DMSP Data 

To compare the ISR density data to the DMSP data, overpass times were required. 

Potential overpass times were computed using an AFRL-provided program that took the 

ephemeris data for the DMSP satellites and determined when the satellites were within 

five degrees of the radars, following Sultan and Rich (2000). Initially, the overpasses 

were computed for all the Western Hemisphere ISRs. This was compiled into a list of 

394 potential conjunctions over the four sites for POLITEs 1-9. The list broke down to 

69 potential overpasses for Arecibo, 71 for Jicamarca, 85 for Millstone Hill, and 169 for 

Sondrestrom. This turned out to be overly optimistic, since some data were unavailable 

from both the DMSP and radars for all the prospective times. Also, some of the 

conjunctions determined by this method were on the fringes of the five-degree circle and 

provided an insufficient number of data points (arbitrarily set at ten data points for the 

five degree circle) from the DMSP to be useful. 

After receiving the DMSP data, it was discovered that F10 data were unavailable 

and Fl 1 was available only for POLITE 6. As to be expected, some of the DMSP data 

from the available satellites and times were missing. On the plus side, DMSP data were 

available for POLITE 10. Using the geographic latitude and longitude from the DMSP 

files, each data point was checked to see if it fell within a five-degree circle of the radar 

sites. This was accomplished using a simple Pythagorean routine. Data points that fell 

within the circle were used to determine the actual time of the overpasses for comparison 

with the radar data files. This step resulted in a total of 37 conjunctions of the DMSP 

satellites with the Millstone Hill radar and 56 conjunctions with Sondrestrom. Later 

analysis indicated a one-degree circle should be used over Sondrestrom due to the 
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amount and variation of ionospheric structure at that latitude. Since Sondrestrom was 

pointed "up B," the one-degree circle needed to be offset from the radar site to account 

for the departure of the beam from vertical. The center of the circle was found using 

trigonometry, taking into account the high-latitude of the site. This resulted in 15 

overpasses of the DMSP satellites within one degree of the Sondrestrom "up B" location, 

with corresponding ISR data for seven of the overpasses. 

Each overpass is referred to with a simple naming convention of the form RP-N. 

R is "M" or "S" for either Millstone Hill or Sondrestrom. P is the POLITE campaign 

number from Table 2, and N is the chronologically sequenced number for all 

conjunctions in the campaign. Cases with an "E" appended to the end had the ISR 

uncertainty re-evaluated using equation (14) from section 3.2.1, and were used in the case 

studies for a comparison of the error propagation techniques. Theses cases were also 

used when comparing measurements from two different DMSP spacecraft directly. 

The SSIES density data were averaged over the prescribed circle. The average 

was used for the comparison, while the standard deviation of the SSIES density data 

indicated how much structure was evident in the ionosphere overhead of the ISR. 

Since Millstone Hill provided three different pulse-length returns (See Section 

3.2.1), each pulse length was plotted to determine useable returns. Using the criteria 

from Sultan and Rich (2000), two good consecutive profiles within ±30 minutes of the 

conjunction were required. When this occurred, all the data points within the time 

window were used to arrive at a representative ISR value for the overpass. Figure 17 

shows examples of each. Two separate techniques were then used to calculate a value for 

the ISR measurement. 
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On the long pulse lengths, the integrated return covered more than the ±25 km 

vertical interval used by Sultan and Rich (2000), so the value for the bin closest to DMSP 

altitude was used and averaged over all the returns for the overpass. For the 1000 (j,sec 

pulse length, this altitude bin was 874 km and represented the return integrated vertically 

over ±75 km. With the 2000 u.sec pulse length, the 844 km bin was used which was 

integrated over ±150 km. The data were considered useable if all the measurements 

required to determine the uncertainty in the corrected density (DNEL) were available 

(See equation (12)). NEL and DNEL were used for the comparison. 

The second method for Millstone Hill took all the useable data (as described 

above) and fit a curve to all the topside data. When possible, the curve was fit to an 

exponential of the form 

y = a + b*exp 
(   x\ 

\   CJ 
(15) 

to attempt to stay consistent with the concept that the atmospheric density decays 

exponentially with height, as given by: 

ni=n^-^lH (16) 

where «,■ is ion species density, z is altitude, H is scale height, and the "0" subscript 

indicates an arbitrary initial altitude. Alternatively, a different exponential or logarithmic 

equation form was used if no fit could be found to equation (15) by the TableCurve™ 2D 

program (Version 4). The fit was visually compared to the density plot to ensure it 
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Figure 17: Example of Incoherent Scatter Radar Returns: (a) Millstone Hill 2000 |j.sec pulse; 
(b) Millstone Hill 1000 ^isec pulse; (c) Millstone Hill 410 jxsec pulse; and (d) Sondrestrom. The 
vertical dotted line shows the DMSP-measured average density. 
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represented the ionosphere as measured by the ISR at the DMSP altitude. Obtaining a 

good fit was occasionally a problem because the transition from 0+ dominance to H"1" 

dominance occurs in this altitude range. The differences in scale heights of 0+ and H+ 

served to create vastly different profiles, evident in Figure 17b. As seen in the definition 

of scale height: 

k T 
H=^- (17) 

m-,8 

with kß again being Boltzmann's constant, T, is ion temperature for species "i", m,- is the 

ion's mass, and the acceleration of gravity g = 9.8 m s"2 (Taken as constant here). The 

mass dependency of H leads to a factor of 16 between the two values. This approach also 

assumes that the ion temperature remains fairly constant, which is not necessarily the 

case. This forced the fit in some instances to be only locally consistent with the profile. 

This fit curve was then either interpolated (long pulse lengths) or extrapolated 

(410 u,sec pulse length) in 5 km steps to the DMSP altitude. The number calculated from 

the fit was manually compared to the actual returns for internal consistency and against 

the DMSP measurement. Also, following Sultan and Rich (2000), the fit data were 

averaged over ±25 km altitude of the DMSP as a tertiary comparison. 

Sondrestrom used only one pulse length, so only one set of NEL and DNEL were 

available. Since a one-degree circle represents less than one minute of DMSP data, only 

the radar returns immediately before and after the overpass were examined. When data 

were present at 840 km for both profiles, the two values were averaged and compared 

directly to the DMSP average. Otherwise, the single reported value at 840 km of the 

valid return was compared directly to the average DMSP measurement. Figure 17d 
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shows a typical example where there was no simple extrapolation possible due to the 

large ionospheric variability. 

The second part of the research focused on the variations of the DMSP 

measurements attempting to classify the random noise in the measurements and the 

ability of the sensor to measure variability in the ionosphere. The variability of the 

DMSP density data was diagnosed using the following sequence: 

1. Perform a linear regression on the raw data. 

2. Determine residuals by subtracting the fit from the raw data. 

3. Compute mean (should be near zero) and standard deviation on the residuals. 

4. Remove data with residuals outside of 2a of the residual mean. 

5. Compute average of the filtered data, i.e., raw data with 2a points removed. 

6. Perform a linear regression on the filtered data. 

7. Determine residuals by subtracting the fit from step 6 from the filtered data. 

8. Compute standard deviation of the filtered residuals and compare to the mean of 

the filtered data, (i.e., o/X). 

This sequence served to first de-trend the data. After this, the outliers (> 2a) were 

removed, and the remaining data were again de-trended. The final step served to provide 

a measurement of the relative data variability. 

The statistics of the data were computed using the Numerical Recipes' "moment" 

subroutine from Press et dl. (1996), and the linear regression was calculated from the 

"fit" subroutine in the same source. These are fairly straightforward routines, taken in 

their entirety to simplify the programming process. 
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Using a simple linear regression to de-trend the data forces some assumptions. 

First, it is assumed that in mid-latitudes, the latitudinal scale length of the variations in Ne 

is large and can be sufficiently approximated by a straight line. In auroral regions, both 

the temporal and spatial scale of variations is considerably shorter. Another assumption 

is that the ionosphere is quiescent. In geomagnetically active periods (i.e., geomagnetic 

storms), the spatial and temporal scales of the physical processes can be much shorter 

(10s of kilometers in space and minutes in time), so a linear fit over several degrees of 

latitude would not be appropriate. The vast majority of the cases had Kp < 3.0, which 

indicates the ionosphere was not being significantly perturbed by geomagnetic activity. 

The maximum Kp during the conjunction periods was 4.3, which is only moderately 

active. 

A final check on the data was performed to determine whether the DMSP was 

located poleward of the equatorward edge of the aurora. This was accomplished using 

the EQB regression routine from AFRL (See Appendix D) and determining a local 

equatorward auroral boundary by taking the equivalent midnight equatorward boundary 

and converting it to the corresponding DMSP magnetic local time (MLT). The EQB 

values were retrieved from the CEDAR database maintained by NOAA's High Altitude 

Observatory, and the location and MLT of the satellite from the SSIES data. After 

converting the EQB to local time and latitude, the satellite's reported location was 

checked to see if it was poleward of this value. If any one point in the data set was 

poleward of the derived boundary, then the entire DMSP conjunction was classified 

"auroral." 
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IV. Results and Analysis 

4.1 Comparison of DMSP versus ISR 

Generally, comparison of DMSP SSIES-measured ionospheric densities to ISR- 

measurements was straightforward. Complications arose when trying to assess error for 

the measurements. The DMSP data contained no uncertainty associated with the 

measurements, and as Figure 18 shows, the density plots were too smooth to readily 

determine instrument noise, in contrast to the electron temperature. The Millstone Hill 

corrected electron densities also did not have associated uncertainties, but they could be 

determined as described in Section 3. Sondrestrom provided corrected electron density 

and the uncertainty in the measurement, so no further processing of the data was required 

before analysis. 

4.1.1 Millstone Hill Overpasses. Several of the Millstone Hill cases 

demonstrated some signs of significant ionospheric structure. Each was examined for 

signs of a SAID, the MT, and the LIT. Also, three case studies were identified where two 

satellites over-flew the radar within -40 minutes of each other. These were examined to 

see if the two satellites were in agreement with each other. 

As shown in Figure 19, clear indications of a SAID were found in Case Ml-1, 

although it occurred north of the comparison region. The density graph, Figure 19a, also 

shows an MT, with the gradual equatorward wall in evidence south of the radar. Looking 

at the velocity components for the same time in Figure 19b, where the total density is the 

lowest, a sharp increase exists in the westward velocity (Vy). A corresponding spike in 
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Figure 18: Example of random noise associated with DMSP (a) density and (b) electron 
temperature. 
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the electron temperature can be discerned in Figure 19c. Include the fact it occurred on 

the winter evening sector and that Kp = 4.3, and you have all the elements of the classic 

SAID signature. Figure 20 details case Ml-2, which also shows signs of the MT, with Te 

increasing as the density of 0+ decreases (slightly) accompanied by an increase in the 

horizontal velocity (The DMSP was in a descending node, which is reflected as 

decreasing magnetic latitude on the abscissa). Also there are indications of the LIT as 

well, with If1" density increasing from under 1000 ions/cm3 to nearly 6000 ions/cm3. 

Figure 20a illustrates problems with the RPA when the concentration of 0+ appears to 

range from zero percent to 100 percent of the total iV, within several seconds. 

Similar results are found throughout this data set for Millstone Hill. Table 6 gives 

a synopsis of these phenomena found in this study. Classification of some events was 

impossible due to missing or bad RPA data, which gives fractional densities as well as 

Vx. Velocities were not available during POLITE 10, and F14 Te for POLITE 10 was 

unreliable. 

51 



www.manaraa.com

DMSP   F12 Ion  Species Density 
Millstone H ill 0 ve rpas s 

YR   1996  DAY   045    0145  UT 

SO M LH       55 

M agnetic Latitu de 

400 ■ 

200 ■ 

o . 

-200 - 

•400 - 

-600 - 

-800 - 

-1000 

DMSP  F12  Ion Velocity  Components 
Millstone  HillOverpass 

YR   1996   DAY   045    0145   UT 

40 50 M LH 

Magnetic Latitude 

DMSP  F12 Electron  Temperature 
Millstone HillOverpass 

YR   1 996  DAY  045    0145  UT 

50 M  LH    55 

M ag n e tic Latitu d e 

Figure 19: DMSP-measured (a) density, (b) velocity, and (c) Te for case Ml-1 showing a MT 
south of 50°N mag lat and a SAID near 60°N mag lat. 
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Figure 20: DMSP-measured (a) density, (b) velocity, and (c) Te indicating a possible MT 
south of 50°N mag lat and a LIT north of that point. 
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Table 6: Ionospheric features found during Millstone Hill overpasses. 

Case SAID MT LIT Case SAID MT LIT 

Ml-1 X X X M6-1 X 

Ml-2 X X M6-2 X 

M2-1 X M6-3 

M2-2 X M7-1 

M2-3 M7-2 

M3-1 M7-3 X 

M3-2 M8-1 

M3-3 M8-2 X 

M3-4 M8-3 

M3-5 M9-1 

M4-1 X X M10-1 

M4-2 X X M10-2 X 

M4-3 M10-3 X 

M4-4 X X M10-4 X 

M4-5 X M10-5 X 

M5-1 M10-6 X 

M5-2 M10-7 

M5-3 M10-8 

M5-4 
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Figure 21: Millstone Hill conjunctions showing ISR and DMSP measurements. 

As mentioned before, 37 conjunctions were found for Millstone Hill. Figure 21 

shows the DMSP measurements with the Millstone Hill 1000 |0,sec and 2000 ^isec 

densities measured at 874 km and 844 km, respectively. By inspection, the DMSP values 

show a negative bias when compared to the measured NEL, and will be discussed in 

detail in Section 4. Each profile is detailed in the available supplement, showing the ISR 

measurements with their associated uncertainties. In the same appendix, the ISR 

measurements and uncertainties from the altitude bin closest to DMSP altitude are 
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displayed as a time series to demonstrate the temporal variability of the density. The 

DMSP data are plotted on the same page. 

The ISR measurements were found to have large uncertainty at DMSP altitudes. 

Figure 22 and Figure 23 show how the ratio of DNEL / NEL varied for the two pulse 

lengths. Both graphs show a similar trend. The ratio of the uncertainty decreases as the 

solar cycle goes from the minimum during the early campaigns, to solar maximum during 

the later campaigns. This was expected, since the increasing solar flux would cause the 

topside ionosphere's density to increase. This would return a stronger signal and less 

noise to the ISR, which is what the graphs show. This being the case, the later 
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Figure 22: DNEL / NEL for Millstone Hill 1000 usec pulse length at 874 km. 
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Figure 23: DNEL / NEL for Millstone Hill 2000 usec pulse length at 844 km. 

POLITE dates still yield greater than 20 percent uncertainties. Even for the cases where 

the lower bound error estimate was used, the lowest ratio was 18.73 percent in Case 

M10-8E. 

As a rough estimate of the DMSP uncertainty, Figure 24 plots the standard 

deviation of the measurements within the five-degree circle was compared to the average 

of those measurements. This did not take into account any of the "physics" that occurred 

in the ionosphere at that time, which can show up as a steady trend in the data, as in the 

case the satellite is entering or leaving a trough, or as large, local changes in the density 
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Figure 24: DMSP a / DMSP Average for Millstone Hill Overpasses. 

from small-scale structure along the DMSP's path. Any physical process that drove large 

variations in the overpass region resulted in a large standard deviation and so were treated 

as part of the instrument variation. A more detailed examination follows in Section 4.2. 

To compare the DMSP to the ISR measurement, the relative error was calculated 

for each case. This was accomplished treating the ISR as the "true" reference value and 

comparing the DMSP value to it using the equation: 

Relative Error = 
(DMSP-NEL) 

NEL 
(18) 
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Figure 25: Relative error DMSP v. MLH 1000 usec measured at 874 km. 

Values for relative error were computed for each type of comparison described in Section 

3.4. After analysis, the values determined for the fit averaged over ±25 km were not 

sufficiently different from the fit value calculated at DMSP altitude. Figure 25 and 

Figure 26 show the relative error of the DMSP versus the ISR-measured data from the 

data bin closest to the DMSP altitude. For both the 1000 ^isec and 2000 u,sec pulse 

lengths, the DMSP shows a definite trend to measure 20 percent and 22 percent low on 

average, respectively. However, referring to the ISR graphs in the supplement, the 

DMSP values fall well within the uncertainty of the radar measurements. 
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Figure 26: Relative error DMSP v. MLH 2000 u.sec measured at 844 km. 

The fit data showed a similar trend, but since the data were analyzed through the 

entire profile for a representative fit, the relative error was generally less. To illustrate 

this point refer to Figure 27, Case M2-1, 2000 u.sec. The ISR-measured density was 

increasing at 844 km, due in part to the change from an 0+-dominated to H+-dominated 

ionosphere. Fitting the data for the profile reduced the effect of this increase, with the fit 

value at the DMSP altitude (in this case 846 km) being less than the average ISR- 

measured data by nearly 1.5 x 109 - over 10 percent of the value. The ISR data bin was 

at 844 km, and it is unreasonable to assume the mid-latitude ionosphere would vary that 

much in only two kilometers. 
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Figure 27: Case M2-1, 2000 pisec. Example of fit performing better than measured data. 

The average relative error of the 1000 jxsec fit was under negative nine percent 

with a standard deviation of 23 percent. While still measuring low compared to the ISR, 

the DMSP has a better agreement, but with 40 percent of the distribution greater than 

zero. Figure 29 shows the absolute value of the relative error of the data and shows the 

DMSP measuring 25 percent difference from the Millstone Hill ISR. From these two 

graphs, it appears the DMSP measurements are biased to the low side of the Millstone 

Hill ISR, particularly toward solar minimum. 
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Figure 28: Relative error DMSP v. MLH 1000 jisec fit data at DMSP altitude. 
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Figure 29: Absolute error DMSP v. MLH 1000 j^sec fit 
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Figure 30 shows the relative error of the 2000 jtsec pulse length fit of the 

Millstone Hill data has an even greater negative difference than the 1000 u.sec fit data, 

but with similar variability. The absolute error of the 2000 u\sec pulse has similar 

characteristics (not shown). 

The relative error of the 410 usec fit data in Figure 31 showed an average positive 

difference of 10 percent, but with substantially increased variability over the other two 

fits. This increased variability resulted from the return not showing the structure above 

the heavy/light ion transition. If this occurred above 700 - 750 km, there was no 

indication in the profile, and so could not be accounted for. For those profiles that did 

show indications of the transition at lower altitudes, it was difficult to account for the 

transitions since the data cut off close to the changeover. 

0.6 

0.4- 

-0.8 

Millstone Hill 
Relative Error - DMSP v. 2000 M^sec Fit 

Average: -14.41% 
o: 23.09% 

I I I  I I I I  I I I I  I I I I  I I I I  I I I I  I I I I  I I I I  I I I I  I I I I  I I 
^cg^cjcocsjCNjco^in^cviUJ^UJ^>o--cv]0^^wco^Luc\iLUCOT-cvico-r--^cv]co,*incDt^Ujeouj 
■A A c\i c\j c\] cococöco cö •■* 4 <>> ■4C?44 lOiÄtnir) cöcotör^ v^-^ r^röcöco äöööö oöö t> o cp 
52255 22 2 2 22S|5|55 5 5 55 5555 ^NS555S-----^O-O 

Millstone Hill Case 

Figure 30: Relative error DMSP v. MLH 2000 usec fit at DMSP altitude. 
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Figure 31: Relative error DMSP v. MLH 410 usec fit at DMSP altitude. 

4.1.2 Millstone Hill Case Study. Three sets of cases were observed where two 

separate DMSP satellites flew over the Millstone Hill site within 45 minutes of each 

other. These were selected since the mid-latitude ionosphere would reasonably be 

expected to not have changed much on this time scale. This way, a direct comparison 

between two separate satellite instrument packages is possible. The cases studies were 

M4-2/M4-3, M7-1/M7-2, and M10-7/M10-8. Table 7 presents the individual studies with 

the earlier overpass (UT) compared to the later. The ratio (earlier/later) in the DMSP 

measurements is contrasted to the ratio in the ISR measurement for both long pulse 

lengths. This serves to relate the changes in the DMSP measurements to any real 

structure in the ionospheres, as determined by the ISR. 
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Table 7: Comparison of case study measurements showing satellites, the satellite Magnetic Local 
Time, the ratio of the DMSP measurements, and the ratio of the ISR measurements for each pulse 
length. 

^^^    Case 

Ratio     ^Sk 

POLITE 4 
F14 (09.56 MLT)/ 
F12 (10.40 MLT) 

POLITE 7 
F14 (20.55 MLT)/ 
F12 (20.43 MLT) 

POLITE 10 
F14 (20.77 MLT)/ 
F15 (21.38 MLT) 

DMSP 0.6724 1.1182 1.3702 

2000 usec 1.2155 1.0948 1.0622 

1000 psec 1.1243 1.0875 1.0475 

The POLITE 7 case shows consistency between the satellite and radar 

measurements. The F14 satellite crossed the terminator from dark to light during the 

overpass, and F12 approached the terminator, but did not cross within the five-degree 

circle. Both satellites measured a relatively undisturbed topside region and showed little 

variability between the two sensors. This is also reflected in the radar measurements. 

The POLITE 10 case also had a consistent change between the two radar profiles, 

however the satellites were significantly different. A factor that could explain the 

discrepancy is that forty-five minutes separated the two satellites. The two times were 

sufficiently far apart that only two radar profiles (2000 p.sec pulse) overlapped. Also, the 

F15 DMSP crossed the site on a more easterly trajectory than the F14, so an east-west 

variation in the density could account for the difference. 

The POLITE 4 case demonstrates clearly the ionosphere defies simple treatment. 

The ratio of the radar measurements is significantly different between the two pulse 

lengths, plus the satellites measurements trend in the opposite direction as the radar (i.e. 

the DMSP measurements increase while the ISR measurements decrease). 
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Looking at the DMSP measurements, M4-2 shows clear signs of both a LIT and a 

MT, while M4-3 shows indications of only a slight LIT. Also, there is a 15 km altitude 

separation between the two satellites and the two satellites pass through different sections 

of the five-degree latitude circle - F14 (M4-2) traversed west of the site and F12 (M4-3) 

passed to the east. Both pulse lengths of the ISR show considerable variability during the 

course of the overpass (about an order of magnitude) for M4-2 while for M4-3 they show 

less (factor of 2 - 3). All these indications suggest physical processes that require 

treatment beyond a simple comparison of two measurements. 

Table 8: Comparison of the upper bound error propagation formula to the lower bound error 
propagation formula for selected Millstone Hill cases. 

"***'***-*^llliii>s^   Pulse Length 

Case                    ^^***«*^. 
2000 usec 1000 usec 

M4-2 0.2936 0.4442 

M4-3 0.2264 0.4077 

M7-1 0.1038 0.1813 

M7-2 0.0863 0.1658 

M10-7 0.0351 0.0691 

M10-8 0.0351 0.0727 

This set of cases was also used to compare the two error propagation schemes (see 

section 3.2.1). Table 8 shows the relative difference of the two methods (upper bound 

minus lower bound) divided by the corrected electron density. Across the limited 

sample, the 2000 ^isec pulse length shows less relative difference than the 1000 u,sec, by 
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close to a factor of two. Also, the apparent solar cycle dependence of the DNEL/NEL 

ratio discussed earlier in this section seems to hold. 

4.1.3 Sondrestrom Overpasses. The conjunctions with Sondrestrom were not 

nearly as straightforward as the long pulse lengths of Millstone Hill. Several reasons can 

account for this: 

1) The shorter ISR pulse length measuring the ionosphere at 840 km, 

2) The overpasses being in the auroral oval (with correspondingly short scale 

lengths and times for ionospheric events), and 

3) The composition assumed when processing the ISR data. 

The DMSP overpasses tended to show considerably more physical structure, 

causing us to restrict the overpass criteria to a one-degree circle. An example of this can 

be seen in Appendix B, Case S8-1. Figure 32 shows the DMSP and ISR measurements 

for Sondrestrom's seven conjunctions. Even with the DMSP traversing only two degrees, 

which worked out to six data points or less, the DMSP measurement varied considerably. 

Figure 33 shows the average DMSP a I DMSP Avg was almost 14 percent. 

The ISR data were similarly challenging. To maintain consistency with the short 

time scale of the DMSP overpass, only data available immediately before and after the 

conjunction were used. This restricted the available data to two radar returns at best, with 

only four of the seven conjunctions having good data on both. Consequently, just under 

half of the comparisons were made with only one radar profile. Again, the uncertainty in 
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Figure 32: Sondrestrom conjunctions showing ISR and DMSP measurements 
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Figure 33: DMSP a / DMSP Avg for Sondrestrom Overpasses. 
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Figure 34: DNEL/NEL for Sondrestrom at 840 km. 

the measurement was on the same order as the measurement; four of the seven cases have 

the uncertainty exceed the measurement. Figure 34 shows the ratio of the DNEL v. NEL 

for the overpasses. 

Comparing the DMSP to the ISR at Sondrestrom resulted in large relative errors, 

due in part to the challenges outlined above. Equation (18) was used again and Figure 35 

shows the results. While large, the relative errors were consistent around -90 percent. 

The DMSP measured lower than the Sondrestrom ISR anywhere from a factor of five to a 

factor of 60, an order of magnitude difference. While these numbers are large, they are 

within the uncertainty in the ISR measurements. 
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Figure 35: Relative error DMSP v. SON near 840 km. 

4.2 Density Variations in the DMSP Measurements 

The DMSP density measurements from the Millstone Hill overpasses were used 

to get a first look at the variability of the DMSP-measured ionospheric density. Most of 

these cases did not show highly variable structure, so a simple least-squares linear 

regression was used for a first-guess at de-trending the measurements. The Millstone Hill 

overpasses were interrogated using the Air Force Research Laboratory Auroral Boundary 

Index to see if any of the data fell within the auroral oval; none did. Since the data from 

over-passing Sondrestrom seemed to indicate a lot of physical structure, a simple linear 

regression would not have been appropriate and has been left for later study. 
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Not all of the Millstone Hill cases lent themselves to this treatment. Several cases 

were either too variable to be fit to the straight line, or fit too well and good data were 

discarded at the 2or threshold. As shown in Figure 36, M9-1 is an example of this. In 

Figure 36a, the ionosphere shows physical structure that varies considerably (and only 

one point is outside the 2ar threshold). Removing the one point in Figure 36c does not 

improve the deviation of the de-trended residuals in Figure 36b and Figure 36d. In either 

case, it is obvious from the figure that the straight line is not appropriate. 

Figure 37 demonstrates another case where legitimate data are removed. M2-2 

shows where this procedure would throw out data that should be retained. The density 

values are relatively small and the variation from the straight line is minimal. With ar 

approximately 10 percent of the average value for this case, the 2ar threshold eliminates 

three data points that should be kept. 

Figure 38 highlights the other problem with this method when the 2ar threshold is 

only applied once. In some cases, the algorithm should be run again to eliminate points 

that were missed. Cases M2-1 and M8-2 illustrate this. In M2-1, the obviously bad 

zero values fall outside the 2cTr threshold, but the data immediately before and after 

should be removed as well, and are not. Similarly, three of the four outliers in M8-2 are 

removed, but one remains to skew the rest of the data. 

A large number of the other cases that had data filtered out came from the end of 

the time series. This was the result of the satellite either entering or leaving a region of 

the ionosphere dominated by differing physical processes, for example a MT or LIT. 

This was not considered a problem since the straight line modeled the remainder of the 
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overpass fairly well. Eight of the cases had no data filtered out. The cases are 

enumerated in Table 9. The quantity 0"r/ Avg is useful in characterizing the amount of 

error relative to the size of the measurement. For these cases, this parameter averaged 

less than three percent, with a standard deviation of 5.3 percent. The footnotes bring to 

light the cases where the routine used fell short, and excluding the cases with footnotes, 

the average and standard deviation of ar/Avg goes to 2.1 percent and 4.3 percent. 
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Figure 36: M9-1 shows too much physical structure for a linear fit. The two points in (a) near 
the lower limit plot are within 2ar- 
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Figure 37: M2-2 shows linear fit removing good data. 

74 



www.manaraa.com

-  Fit 
18000 -  2c 

r 

16000 - 

14000- 

y 
(c

m
 -

3)
 

O
    

    
    

O
 

O
    

    
    

O
 

O
    

    
    

O
 

*^?&*~-i^~^ M2-1 
YR 1996 

»      8000 - \        I DAY 317 

CD 
Q      6000 - \   I UT 1501 

Raw Data 

4000 - U -  
2000 - 

0 - 
- - ■ \ 1 ■■■ 

i            i            i            i            l            i 

58                       56                        54                       52 
i          ■          i 

50                      48 

Magnetic Latitude 

a 

—■—F13 Density 
-i r It 

14000 - 
,...----■"" 

r 

12000- 

■"■■ 

ity
 (

cm
 -

3)
 

8 
  

  
  
 8

 
0
 

o
 

o
   

   
  

   
 o

 
1 

1  
  

I  
  

1 

M8-2 
eo 
c 

°      6000- ^^ 
YR 1999 
DAY 344 
UT 1134 

- Raw Data 
4000- 

_....-"*"'"" 

onnn 
■                 .            |           i           |           i            |           i 

58                      56                      54                      52 
i         ■         i 

50                      48 

Magnetic Latitude 

b 

Figure 38: Examples requiring another application of filtering algorithm. 
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Table 9: DMSP Density Variability 

Case Filtered 
Average 
104 cm"3 

a 
Residual 

ar/ 
Avg 

Case 
Filtered 
Average 
104cm-3 

or 
Residual 

Or/ 
Avg 

Ml-1 0.341 976 0.218 M6-1 1.329 71.3 0.005 

Ml-24 0.332 284 0.085 M6-2 0.823 313 0.038 

M2-13 1.108 2000 0.181 M6-32 2.588 250 0.010 

M2-2 1.133 87.6 0.008 M7-1 3.330 3060 0.092 

M2-3 1.345 79.7 0.006 M7-22 2.973 274 0.009 

M3-1 1.594 58.2 0.004 M7-3 2.052 101 0.005 

M3-2 1.307 158 0.012 M8-1 1.471 306 0.021 

M3-32 1.229 145 0.012 M8-2" 0.899 1640 0.182 

M3-4 2.479 98.8 0.004 M8-31 3.562 0.057 0.000 

M3-5 1.443 213 0.015 M9-12 4.828 809 0.017 

M4-1 0.631 255 0.040 M10-1 7.016 356 0.005 

M4-2 1.697 162 0.010 M10-2 5.110 206 0.004 

M4-3 1.138 137 0.012 M10-3 7.277 340 0.005 

M4-4 0.794 83.3 0.011 M10-42 9.413 1078 0.011 

M4-54 1.018 90.5 0.009 M10-5 6.324 133 0.002 

M5-1 2.008 342 0.017 M10-6 8.275 190 0.002 

M5-2 1.394 85.0 0.006 M10-7 10.614 410 0.004 

M5-3 3.110 130 0.004 M10-8 7.336 751 0.010 

M5-4 2.771 483 0.017 

NOTES:     Data constant for overpass. Outliers still present 
Linear fit not good approximation.    2ar threshold too small 
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V. Conclusions and Recommendations 

5.1 Conclusions 

In all cases studied, the DMSP SSIES instruments recorded a lower value of 

plasma density values on average than either the Millstone Hill or Sondrestrom 

Incoherent Scatter Radars. A difference was not unexpected, since the uncertainty of the 

ISR at these altitudes was found to be on the order of the size of the measurement, and a 

factor of two was not uncommon. The apparent bias was unexpected. 

The relative error of the DMSP was negative 20 - 22 percent when compared to 

the measured Millstone Hill ISR values, and ranged from ~ -10 to -15 percent for the fit 

data. Both of these values exceed the published value of 10 percent (Rich, 1994) and at 

first blush, seem to disagree with Sultan and Rich (2000), whose research did not reveal 

such a bias. However the same parameters were not used when selecting cases for this 

research, and larger relative errors were expected. The Sultan and Rich (2000) study 

used only "good" ISR measurements at mid-latitudes during solar max, which lends itself 

to an ISR profile with less uncertainty. Our research also included an analysis of the 

uncertainty of the ISR, so less restrictive selection criteria were needed. The fit data 

compared better than the measured data because the entire profile was incorporated into 

modeling the fit. The relative error of the fit profiles approached the advertised value. 

The Sondrestrom ISR measurements were significantly different than the 

DMSP's, averaging almost -90 percent relative error. Again, this range of the difference • 

was not a surprise, however the bias was still unexpected. The auroral oval and polar cap 

have temporal and spatial characteristics that cannot be resolved by the ISR, especially at 
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DMSP altitudes where the ISR is forced to integrate over a 10-minute period. Even so, 

the DMSP measurement was within the uncertainty of the radar. All in all, this study 

does not contradict Sultan and Rich (2000) about the relative error of the DMSP 

measurements, but finds that the DMSP measures the same density as the ISRs within the 

radars' uncertainty. Also as shown in Figure 35, to a first approximation, the slope of the 

trend of the relative errors is positive, indicating a slight improvement in the relative error 

as the solar cycle approached solar max. Again, the bias has not been characterized 

previously. 

The near-simultaneous Millstone Hill overpass cases explored two areas. First 

was the lower bound error propagation equation. This method did yield significantly 

smaller uncertainties in the Millstone Hill data. Even with that being the case, the DMSP 

still measured the density within the smaller ISR uncertainty in the cases examined. 

Second, SSIES instrument packages from two different satellites were compared. In the 

quiescent ionosphere of POLITE 7, the SSIES measured the same relative changes as the 

Millstone Hill ISR, but in the more active periods the SSIES-measured changes did not 

correspond to the ISR-measured changes. Further study is needed to determine whether 

this difference is instrumental or the separate satellites measured changes caused by local 

ionospheric structure and dynamics. 

The variability study gives a first approximation of the DMSP measurement 

variations in mid-latitudes. For now, the variability can be interpreted as physical 

processes in the ionosphere that may be on a scale too small to model effectively and 

have to be included in the Kaiman filter as noise. Because the SSIES data were averaged 

78 



www.manaraa.com

24 times per second for four seconds, no real estimation of instrument noise was made 

since the data are too smooth for a true random noise approximation. 

Given the smoothness of the DMSP data, these conclusions might be extended to 

equatorial latitudes with little trepidation. While small-scale features may be encountered 

there, except for equatorial instabilities, they will generally not exceed the amount 

encountered in the mid-latitude cases in this study. The auroral oval and polar cap 

regions need a more rigorous treatment to characterize the SSIES variability in those 

regions. A least-squares linear fit by no means can approximate the structure and 

dynamics involved poleward of the auroral boundary. 

5.2 Recommendations 

Further validation of the data are recommended in the polar cap and auroral oval 

regions; however comparing the DMSP to ground-based instrumentation will generate 

the same problems encountered here. Comparisons between DMSP and other in situ 

instrumentation will need to be performed to arrive at data sets that are not preordained to 

be overwhelmed by the uncertainties in the measurements. Another possible course of 

action to reduce uncertainty in the ISR profiles is to re-process the Millstone Hill data 

into 10-minute integration files. Since two studies (Sultan and Rich, 2000, and this one) 

have explicitly compared the DMSP to the Millstone Hill ISR and concluded that the 

difference of the measurements are within the error, this step is probably not worth the 

time and effort. The unexplained bias encountered here suggests further collaboration 

between AFRL, UTD, Millstone Hill, and Sondrestrom. 
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The data set collected for this thesis still has a wealth of untouched information. 

This and the companion electron temperature work can be extended to ion velocity, 

temperature, and composition with little new effort. 

ISR data from Arecibo and Jicamarca for the POLITE periods could extend these 

results into the equatorial region, and EISCAT data could expand the comparison into the 

auroral oval/polar cap. This would also serve to collect the POLITE campaign data into 

one repository. 

The characterization of the entire set of 1147 orbits of DMSP SSIES density 

measurements is the logical next step. This would provide a global picture of the density 

variations and an estimate of the typical instrument noise associated with all phases of the 

rising solar cycle. Once this methodology is in place, other parameters as mentioned 

above can be categorized with alacrity. 

Since the DMSP will soon fall under NOAA auspices, an effort should be made to 

continue equipping the NPOES with SSIES-like instruments, and ensure real-time 

telemetry of the information is made a reality. The state of the science is at the point 

where the continuous monitoring of the topside ionosphere — and assimilation of that 

data into physics-based models — will greatly enhance the community's ability to model 

and forecast space weather and geomagnetic events. This will have a positive impact not 

only the Air Force and DoD mission, but also commercial enterprises. 
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Appendix A: Millstone Hill Comparison 

The following pages contain the numerical data used for the comparison of the 

Millstone Hill ISR measurements to the DMSP SSIES density measurements. Each page 

contains one conjunction's data and is titled using the naming convention from Section 3. 

Included are: 

1. DMSP satellite number 

2. f if the satellite is in an ascending node and j if in a descending node 

(This element will have a dark background if the satellite is eclipsed) 

3. Kp index 

4. F10.7 solar flux 

5. DMSP average and standard deviation (cm3) 

6. Number of DMSP data points within the five-degree circle 

7. DMSP magnetic local time 

8. Measured Millstone Hill average NEL and DNEL for each pulse (m3) 

9. Fit Millstone Hill NEL at DMSP altitude for each pulse 

10. Fit Millstone Hill average and standard deviation for each pulse within 

± 25 km of DMSP altitude 

For the overpasses involved in the case studies, an additional table contains the 

results from the lower bound error propagation equation for DNEL (see equation (14)). 

Items 8-10 from the above list reflect the modified DNEL results. 
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The supplemental data section includes the tables, plus a plot of all the data used. 

It is available upon request from the author, the advisor, or the Engineering Physics 

Department at the Air Force Institute of Technology. 
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MM 
96 045 01.758 

Table 10: Case MM 

F12 t Kp 4.3 F10.7 67.2 

DMSP 
Avg 

3.484E+03 DMSP a 1188 # DMSP Pts 41 

MLT 20.62 Fit 
1 Measured 

1 Avg 
2000 1000 410 

2000 NEL 
845 km 

9.855E+09 @DMSP 
Alt 

9.179E+09 H=*N=* **** 

DNEL 1.002E+10 ±25 km 
Avg 

9.181E+09 **** **** 

1000 NEL 
874 km 

**H=* a 3.265E+07 **** **** 

DNEL **** 

Ml-2 
96 045 10.820 

Table 11: Case Ml-2 

F13 i Kp 3.3 F10.7 67.2 

DMSP 
Avg 

3.404E+03 DMSP a 1049 # DMSP Pts 29 

MLT 6.46 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
845 km 

1.219E+10 @DMSP 
Alt 

5.693E+09 **** 3.469E+09 

DNEL 1.497E+10 ±25 km 
Avg 

5.697E+09 **** 3.470E+09 

1000 NEL 
874 km 

**** a 1.034E+08 **** 2.230E+07 

DNEL **** 
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M2-1 
96 317 15.033 

Table 12: Case M2-1 

F12 I Kp 1.0 F10.7 70.7 

DMSP 
Avg 

1.000E+04 DMSP a 3901 #DMSPPts 31 

MLT 10.48 Fit 
1 Measured 
I Avg 

2000 1000 410 

2000 NEL 
844 km 

1.379E+10 @DMSP 
Alt 

1.226E+10 9.593E+09 8.627E+09 

DNEL 1.424E+11 ±25 km 
Avg 

1.233E+10 9.596E+09 8.680E+09 

1000 NEL 
874 km 

1.053E+10 a 1.362E+09 3.016E+07 1.128E+08 

DNEL 1.303E+10 

M2-2 
96 318 14.840 

Table 13: Case M2-2 

F12 I Kp 2.0 F10.7 70.7 

DMSP 
Avg 

1.138E+04 DMSP a 670 # DMSP Pts 41 

MLT 10.49 Fit 
Measured 
Avg 

2000 1000 410 

2000 NEL 
844 km 

7.692E+09 @DMSP 
Alt 

8.027E+09 1.002E+10 2.006E+10 

DNEL 6.679E+09 ±25 km 
Avg 

8.034E+09 1.002E+10 2.006E+10 

1000 NEL 
874 km 

1.205E+10 a 1.915E+08 1.668E+08 2.645E+07 

DNEL 1.588E+10 
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M2-3 
96 319 14.639 

Table 14: Case M2-3 

F12 I Kp 1.8 F10.7 72.1 

DMSP 
Avg 

1.343E+04 DMSP a 337 # DMSP Pts 36 

MLT 10.56 Fit 

1 Measured 
I Avg 

2000 1000 410 

2000 NEL 
844 km 

1.119E+10 @DMSP 
Alt 

1.046E+10 1.260E+10 1.229E+10 

DNEL 8.832E+09 ±25 km 
Avg 

1.047E+10 1.260E+10 1.229E+10 

1000 NEL 
874 km 

1.292E+10 a 4.521E+07 9.689E+06 2.080E+07 

DNEL 1.285E+10 

M3-1 
97154 14.461 

Table 15: CaseM3-l 

F12 I Kp 1.7 F10.7 77.4 
DMSP 
Avg 

1.600E+04 DMSP a 565 # DMSP Pts 18 

MLT 10.16 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

2.334E+10 @DMSP 
Alt 

2.129E+10 1.863E+10 1.193E+10 

DNEL 1.765E+10 ±25 km 
Avg 

2.124E+10 1.865E+10 1.195E+10 

1000 NEL 
874 km 

2.414E+10 o 8.983E+08 5.349E+08 7.246E+10 

DNEL 2.697E+10 
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M3-2 
97155 01.906 

Table 16: CaseM3-2 

F12 t Kp 2.0 F10.7 76.1 
DMSP 
Avg 

1.307E+04 DMSPcr 396 #DMSPPts 16 

MLT 21.52 Fit 
1 Measured 

1 Avg 
2000 1000 410 

2000 NEL 
844 km 

2.197E+10 @DMSP 
Alt 

1.671E+10 2.227E+10 1.054E+10 

DNEL 2.104E+10 ±25 km 
Avg 

1.674E+10 2.278E+10 1.057E+10 

1000 NEL 
874 km 

3.436E+10 a 1.032E+09 4.986E+07 7.330E+08 

DNEL 4.311E+10 

M3-4 
97155 22.298 

Table 17: CaseM3-4 

F13 t Kp 1.0 F10.7 76.1 
DMSP 
Avg 

2.479E+04 DMSP a 324 # DMSP Pts 22 

MLT 17.70 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

1.801E+11 @DMSP 
Alt 

3.608E+10 3.411E+10 4.036E+10 

DNEL 2.664E+11 ±25 km 
Avg 

3.612E+10 3.414E+10 4.039E+10 

1000 NEL 
877 km 

4.247E+10 o 1.459E+09 1.113E+09 4.653E+08 

DNEL 3.398E+10 
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M3-5 
97 156 01.713 

Table 18: CaseM3-5 

F12 t Kp 1.0 F10.7 76.1 

DMSP 
Avg 

1.447E+04 DMSP a 972 #DMSPPts 39 

MLT 21.60 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

2.422E+10 @DMSP 
Alt 

3.812E+10 2.467E+10 2.180E+10 

DNEL 2.064E+10 ±25 km 
Avg 

3.812E+10 2.469E+10 2.183E+10 

1000 NEL 
874 km 

3.240E+10 o 8.221E+07 3.455E+08 3.422E+08 

DNEL 3.329E+10 

M4-1 
97 337 11.077 

Table 19: CaseM4-l 

F13 i Kp 1.3 F10.7 109.0 
DMSP 
Avg 

6.546E+03 DMSP a 1354 # DMSP Pts 40 

MLT 7.00 Fit 
1 Measured 
I Avg 

2000 1000 410 

2000 NEL 
844 km 

1.000E+10 @DMSP 
Alt 

1.083E+10 1.330E+10 2.276E+10 

DNEL 1.789E+10 ±25 km 
Avg 

1.041E+10 1.330E+10 2.277E+10 

1000 NEL 
874 km 

2.021E+10 a 7.580E+07 6.080E+06 9.506E+07 

DNEL 3.607E+11 
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M4-2 
97 337 14.023 

Table 20: CaseM4-2 

F14 I Kp 2.0 F10.7 109.0 

DMSP 
Avg 

1.141E+04 DMSPo 480 #DMSPPts 39 

MLT 9.56 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

1.799E+10 @DMSP 
Alt 

1.506E+10 1.231E+10 2.261E+10 

DNEL 1.516E+10 ±25 km 
Avg 

1.508E+10 1.232E+10 2.262E+10 

1000 NEL 
874 km 

2.143E+10 o 1.841E+08 1.872E+08 1.657E+08 

DNEL 2.604E+10 

Modified Error 

Table 21: Case M4-2 Modified Error 

I Measured        ^^^^^^^H 
I Avg                 ^^^^^B 

2000 1000 410 

2000 NEL 
844 km 

1.799E+10 @DMSP 
Alt 

1.506E+10 9.938E+09 1.655E+10 

DNEL 9.879E+09 ±25 km 
Avg 

1.508E+10 9.404E+09 1.657E+10 

1000 NEL 
874 km 

2.143E+10 a 1.920E+08 4.435E+08 1.365E+08 

DNEL 1.652E+10 
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M4-3 
97 337 14.396 

Table 22: CaseM4-3 

F12 i Kp 2.0 F10.7 109.0 

DMSP 
Avg 

1.697E+04 DMSP a 526 #DMSPPts 26 

MLT 10.40 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

1.480E+10 @DMSP 
Alt 

1.589E+10 1.430E+10 1.855E+10 

DNEL 1.080E+10 ±25 km 
Avg 

1.591E+10 1.432E+10 1.857E+10 

1000 NEL 
874 km 

1.906E+10 a 5.188E+08 5.306E+08 6.094E+08 

DNEL 2.049E+10 

Modified Error 

Table 23: Case M4-3 Modified Error 

1 Measured        ^^^^^^^H 
1 Avg                 ^^^^^H 

2000 1000 410 

2000 NEL 
844 km 

1.480E+10 @DMSP 
Alt 

2.089E+10 1.334E+10 2.483E+10 

DNEL 7.449E+09 ±25 km 
Avg 

2.705E+10 1.335E+10 2.485E+10 

1000 NEL 
874 km 

1.906E+10 a 2.450E+09 4.608E+07 2.042E+08 

DNEL 1.272E+10 
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M4-4 
97 338 10.869 

Table 24: CaseM4-4 

F13 4, Kp 1.3 F10.7 104.2 

DMSP 
Avg 

8.012E+03 DMSPo 1038 #DMSPPts 26 

MLT 7.09 Fit 
1 Measured 
I Avg 

2000 1000 410 

2000 NEL 
844 km 

**** @DMSP 
Alt 

**** 1.218E+10 1.717E+10 

DNEL **** ±25 km 
Avg 

**** 1.218E+10 1.730E+10 

1000 NEL 
874 km 

2.937E+10 a **** 6.293E+06 3.371E+10 

DNEL 2.937E+10 

M4-5 
97 338 13.819 

Table 25: CaseM4-5 

F14 i Kp 1.3 F10.7 104.2 
DMSP 
Avg 

9.942E+03 DMSP a 1806 #DMSPPts 38 

MLT 9.62 Fit 
Measured        ^^^^^^^H 
Avg                 ^^^^^H 

2000 1000 410 

2000 NEL 
844 km 

1.426E+10 @DMSP 
Alt 

1.274E+10 1.398E+10 9.736E+09 

DNEL 1.412E+10 ±25 km 
Avg 

1.275E+10 1.399E+10 9.271E+09 

1000 NEL 
874 km 

1.983E+10 a 1.737E+08 1.741E+07 3.592E+08 

DNEL 3.990E+10 
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M5-1 
98 147 00.928 

Table 26: CaseM5-l 

F14 t Kp 2.0 F10.7 96.6 

DMSP 
Avg 

2.008E+04 DMSP a 1061 #DMSPPts 39 

MLT 20.81 Fit 
1 Measured        ^^^^^^^| 
1 Avg                I 

2000 1000 410 

2000 NEL 
844 km 

2.336E+10 @DMSP 
Alt 

2.154E+10 2.415E+10 1.973E+10 

DNEL 8.883E+09 ±25 km 
Avg 

2.162E+10 2.421E+10 1.977E+10 

1000 NEL 
874 km 

2.474E+10 a 1.417E+09 4.088E+09 1.007E+09 

DNEL 1.403E+10 

M5-2 
98147 10.912 

Table 27: CaseM5-2 

F13 i Kp 1.7 F10.7 96.6 
DMSP 
Avg 

1.392E+04 DMSP a 148 # DMSP Pts 27 

MLT 6.45 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

1.495E+10 @DMSP 
Alt 

1.381E+10 1.324E+10 1.536E+10 

DNEL 8.586E+09 ±25 km 
Avg 

1.384E+10 1.326E+10 1.558E+10 

1000 NEL 
874 km 

1.668E+10 a 5.231E+08 6.328E+08 5.990E+08 

DNEL 1.384E+10 
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M5-3 
98 147 22.352 

Table 28: CaseM5-3 

F13 t Kp 2.0 F10.7 96.6 

DMSP 
Avg 

3.108E+04 DMSP a 363 #DMSPPts 23 

MLT 17.76 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

3.183E+10 @DMSP 
Alt 

3.158E+10 3.079E+10 3.508E+10 

DNEL 1.062E+10 ±25 km 
Avg 

3.163E+10 3.085E+10 3.512E+10 

1000 NEL 
874 km 

3.118E+10 a 1.565E+09 1.426E+09 1.055E+09 

DNEL 1.663E+10 

M5-4 
98 148 00.722 

Table 29: CaseM5-4 

F14 t Kp 0.7 F10.7 101.1 

DMSP 
Avg 

2.771E+04 DMSP a 1522 #DMSPPts 34 

MLT 20.89 Fit 
Measured 
Avg 

2000 1000 410 

2000 NEL 
844 km 

3.430E+10 @DMSP 
Alt 

3.112E+10 3.807E+10 2.265E+10 

DNEL 1.127E+10 ±25 km 
Avg 

3.123E+10 2.815E+10 2.270E+10 

1000 NEL 
874 km 

2.928E+10 a 1.800E+09 1.300E+09 1.083E+09 

DNEL 1.441E+10 
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M6-1 
98 327 00.647 

Table 30: CaseM6-l 

F14 t Kp 2.7 F10.7 126.7 

DMSP 
Avg 

1.327E+04 DMSPa 141 #DMSPPts 11 

MLT 20.59 Fit 
Measured 
Avg 

2000 1000 410 

2000 NEL 
844 km 

1.580E+10 @DMSP 
Alt 

1.565E+10 1.781E+10 1.318E+10 

DNEL 1.237E+10 ±25 km 
Avg 

1.569E+10 1.784E+10 1.335E+10 

1000 NEL 
874 km 

2.305E+10 a 5.609E+08 4.577E+08 4.829E+08 

DNEL 2.335E+10 

M6-2 
98 327 11.262 

Table 31: CaseM6-2 

F13 i Kp 2.0 F10.7 126.7 

DMSP 
Avg 

8.235E+03 DMSPa 1964 # DMSP Pts 40 

MLT 7.08 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

**** @DMSP 
Alt 

7.518E+09 1.218E+10 1.185E+10 

DNEL **** ±25 km 
Avg 

7.537E+09 1.219E+10 1.180E+10 

1000 NEL 
874 km 

**** a 2.005E+08 8.955E+07 1.913E+08 

DNEL **** 
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M6-3 
98 327 14.252 

Table 32: CaseM6-3 

F12 I Kp 3.0 F10.7 126.7 
DMSP 
Avg 

2.587E+04 DMSP a 292 #DMSPPts 37 

MLT 10.15 Fit 
Measured        ^^^^^^^| 
Avg                I 

2000 1000 410 

2000 NEL 
844 km 

2.801E+10 @DMSP 
Alt 

2.961E+10 2.465E+10 3.317E+10 

DNEL 1.261E+10 ±25 km 
Avg 

2.967E+10 2.411E+10 3.321E+10 

1000 NEL 
874 km 

2.277E+10 a 1.568E+09 1.298E+09 9.197E+08 

DNEL 1.386E+10 
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M7-1 
99 282 01.002 

Table 33: CaseM7-l 

F14 T* Kp 0.7 F10.7 152.8 

DMSP 
Avg 

3.330E+04 DMSPo 5890 #DMSPPts 41 

MLT 20.55 Fit 
Measured 
Avg 

2000 1000 410 

2000 NEL 
844 km 

4.378E+10 @DMSP 
Alt 

4.055E+10 3.752E+10 2.760E+10 

DNEL 1.641E+10 ±25 km 
Avg 

4.067E+10 3.759E+10 2.767E+10 

1000 NEL 
874 km 

3.976E+10 a 2.433E+09 1.571E+09 1.445E+09 

DNEL 2.369E+10 

* Satellite Crosses Terminator 

Modified Error 

Table 34: Case M7-1 Modified Error 

1 Measured 
I Avg 

2000 1000 410 

2000 NEL 
844 km 

4.378E+10 @DMSP 
Alt 

3.276E+10 3.571E+10 3.167E+10 

DNEL 1.284E+10 ±25 km 
Avg 

3.320E+10 3.580E+10 3.173E+10 

1000 NEL 
874 km 

3.976E+10 a 1.240E+09 1.645E+09 1.341E+09 

DNEL 1.648E+10 
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M7-2 
99 282 01.244 

Table 35: CaseM7-2 

F12 t Kp 0.7 F10.7 152.8 

DMSP 
Avg 

2.978E+04 DMSP a 359 # DMSP Pts 27 

MLT 20.43 Fit 
Measured 
Avg 

2000 1000 410 

2000 NEL 
844 km 

3.999E+10 @DMSP 
Alt 

3.938E+10 3.377E+10 2.802E+10 

DNEL 1.551E+10 ±25 km 
Avg 

3.949E+10 3.386E+10 2.808E+10 

1000 NEL 
874 km 

3.656E+10 a 2.394E+09 1.277E+09 2.526E+09 

DNEL 2.072E+10 

Modified Error 

Table 36: Case M7-2 Modified Error 

1 Measured 
I Avg 

2000 1000 410 

2000 NEL 
844 km 

3.999E+10 @DMSP 
Alt 

3.865E+10 3.390E+10 2.750E+10 

DNEL 1.206E+10 ±25 km 
Avg 

3.869E+10 3.397E+10 2.757E+10 

1000 NEL 
874 km 

3.656E+10 a 1.789E+09 1.338E+09 8.860E+08 

DNEL 1.466E+10 

96 



www.manaraa.com

M7-3 
99 282 11.017 

Table 37: CaseM7-3 

F13 i Kp 1.0 F10.7 152.8 

DMSP 
Avg 

2.053E+04 DMSP a 426 # DMSP Pts 24 

MLT 12.79 Fit 
1 Measured        1 

1 Avg 
2000 1000 410 

2000 NEL 
844 km 

2.243E+10 @DMSP 
Alt 

2.411E+10 2.158E+10 2.749E+10 

DNEL 1.269E+10 ±25 km 
Avg 

2.514E+10 2.162E+10 2.752E+10 

1000 NEL 
874 km 

2.455E+10 a 5.550E+08 6.917E+08 8.647E+08 

DNEL 2.403E+10 

M8-1 
99 344 01.346 

Table 38: CaseM8-l 

F14 T Kp 2.0 F10.7 159.5 

DMSP 
Avg 

1.466E+04 DMSP a 805 # DMSP Pts 15 

MLT 20.18 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

2.523E+10 @DMSP 
Alt 

1.958E+10 2.351E+10 1.574E+10 

DNEL 1.901E+10 ±25 km 
Avg 

1.963E+10 2.359E+10 1.575E+10 

1000 NEL 
874 km 

3.275E+10 a 9.000E+08 7.525E+08 1.033E+07 

DNEL 2.513E+10 
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M8-2 
99 344 11.581 

Table 39: CaseM8-2 

F13 i Kp 1.3 F10.7 159.5 

DMSP 
Avg 

8.305E+03 DMSP a 2682 #DMSPPts 24 

MLT 7.09 Fit 
I Measured 
I Avg 

2000 1000 410 

2000 NEL 
844 km 

**** @DMSP 
Alt 

1.741E+10 2.913E+10 4.760E+09 

DNEL **** ±25 km 
Avg 

1.793E+10 2.913E+10 4.778E+09 

1000 NEL 
874 km 

2.546E+10 CT 3.043E+08 7.297E+08 3.162E+08 

DNEL 2.514E+10 

M8-3 
99 344 14.088 

Table 40: CaseM8-3 

F12 i Kp 2.0 F10.7 159.8 
DMSP 
Avg 

3.562E+04 DMSP a 0 # DMSP Pts 22 

MLT 9.57 Fit 
Measured 
Avg 

2000 1000 410 

2000 NEL 
844 km 

8.135E+10 @DMSP 
Alt 

3.080E+10 3.826E+10 4.958E+10 

DNEL 4.264E+10 ±25 km 
Avg 

3.089E+10 3.828E+10 4.964E+10 

1000 NEL 
874 km 

3.751E+10 a 1.963E+09 9.191E+08 1.188E+09 

DNEL 2.454E+10 
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M9-1 
00 006 22.444 

Table 41: CaseM9-l 

F13 t Kp 3.3 F10.7 140.0 

DMSP 
Avg 

4.820E+04 DMSP a 976 #DMSPPts 28 

MLT 17.52 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

6.765E+10 @DMSP 
Alt 

5.475E+10 4.691E+10 5.643E+10 

DNEL 3.244E+10 ±25 km 
Avg 

5.493E+10 4.704E+10 5.650E+10 

1000 NEL 
874 km 

7.145E+10 a 3.563E+09 2.945E+09 4.915E+08 

DNEL 4.163E+10 

M10-1 
00 183 13.825 

Table 42: CaseM10-l 

F14 i Kp 1.0 F10.7 169.2 

DMSP 
Avg 

6.998E+04 DMSP a 883 # DMSP Pts 29 

MLT 9.27 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

6.751E+10 @DMSP 
Alt 

5.878E+10 6.144E+10 3.122E+10 

DNEL 2.178E+10 ±25 km 
Avg 

5.890E+10 6.155E+10 3.132E+10 

1000 NEL 
874 km 

6.135E+10 a 3.232E+09 2.236E+09 2.614E+09 

DNEL 3.210E+10 
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MlO-2 
00183 14.600 

Table 43: CaseM10-2 

F15 I Kp 1.0 F10.7 169.2 

DMSP 
Avg 

5.109E+04 DMSP a 766 #DMSPPts 39 

MLT 9.91 Fit 

1 Measured        ^^^^^^^H 
1 Avg                 ^^^^^H 

2000 1000 410 

2000 NEL 
844 km 

6.045E+10 @DMSP 
Alt 

5.790E+10 5.750E+10 3.151E+10 

DNEL 2.106E+10 ±25 km 
Avg 

5.803E+10 5.760E+10 3.160E+10 

1000 NEL 
874 km 

5.636E+10 a 3.067E+09 2.405E+09 2.549E+09 

DNEL 3.217E+10 

M10-3 
00183 22.169 

Table 44: CaseM10-3 

F13 t Kp 2.3 F10.7 169.2 

DMSP 
Avg 

7.282E+04 DMSP a 839 # DMSP Pts 40 

MLT 17.91 Fit 
1 Measured        ^^^^^^^H 
1 Avg                 ^^^^^H 

2000 1000 410 

2000 NEL 
844 km 

8.176E+10 @DMSP 
Alt 

7.837E+10 6.672E+10 3.166E+10 

DNEL 2.019E+10 ±25 km 
Avg 

7.854E+10 6.686E+10 3.183E+10 

1000 NEL 
874 km 

7.001E+10 a 4.924E+10 3.514E+09 3.619E+09 

DNEL 2.334E+10 
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MlO-4 
00 184 01.258 

Table 45: CaseM10-4 

F14 t Kp 1.1 F10.7 167.9 

DMSP 
Avg 

9.413E+04 DMSP a 2741 #DMSPPts 22 

MLT 20.77 Fit 

Measured 
Avg 

2000 1000 410 

2000 NEL 
844 km 

9.325E+10 @DMSP 
Alt 

8.773E+10 8.352E+10 7.371E+10 

DNEL 2.100E+10 ±25 km 
Avg 

8.802E+10 8.371E+10 7.374E+10 

1000 NEL 
874 km 

8.408E+10 a 5.837E+09 4.928E+09 1.462E+08 

DNEL 2.815E+10 

M10-5 
00184 14.354 

Table 46: CaseM10-5 

F15 I Kp 1.0 F10.7 167.9 

DMSP 
Avg 

6.324E+04 DMSP a 367 #DMSPPts 12 

MLT 10.03 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

6.750E+10 @DMSP 
Alt 

6.521E+10 6.365E+10 2.816E+10 

DNEL 2.095E+10 ±25 km 
Avg 

6.540E+10 6.376E+10 2.829E+10 

1000 NEL 
874 km 

5.950E+10 a 4.047E+09 3.450E+09 3.032E+09 

DNEL 2.879E+10 
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MlO-6 

00 184 21.949 

Table 47: CaseM10-6 

F13 t Kp 1.0 F10.7 167.9 

DMSP 
Avg 

2.288E+04 DMSP a 509 # DMSP Pts 21 

MLT 13.01 Fit 
1 Measured 
1 Avg 

2000 1000 410 

2000 NEL 
844 km 

9.517E+10 @DMSP 
Alt 

8.805E+10 7.956E+10 4.175E+10 

DNEL 2.092E+10 ±25 km 
Avg 

8.832E+10 7.976E+10 4.197E+10 

1000 NEL 
874 km 

8.210E+10 a 5.547E+09 4.972E+09 4.952E+09 

DNEL 2.647E+10 
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MlO-7 
00 185 01.055 

Table 48: CaseM10-7 

F14 t Kp 2.0 F10.7 161.5 

DMSP 
Avg 

1.060E+05 DMSP a 1892 #DMSPPts 40 

MLT 20.77 Fit 
Measured        I 
Avg                ^^^^^| 

2000 1000 410 

2000 NEL 
844 km 

9.718E+10 @DMSP 
Alt 

9.510E+10 8.337E+10 5.327E+10 

DNEL 2.187E+10 ±25 km 
Avg 

9.536E+10 8.358E+10 5.346E+10 

1000 NEL 
874 km 

8.410E+10 a 6.410E+09 5.488E+09 4.028E+09 

DNEL 2.774E+10 

Modified Error 

Table 49: Case M10-7 Modified Error 

1 Measured        ^^^^^^^H 
1 Avg                 ^^^^^H 

2000 1000 410 

2000 NEL 
844 km 

9.718E+10 @DMSP 
Alt 

9.340E+10 8.582E+10 7.567E+10 

DNEL 1.846E+10 ±25 km 
Avg 

9.368E+10 8.604E+10 7.582E+10 

1000 NEL 
874 km 

8.410E+10 a 6.274E+09 4.894E+09 3.859E+09 

DNEL 2.193E+10 
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MlO-8 

00 185 01.796 

Table 50: Case 10-8 

F15 t Kp 2.0 F10.7 161.5 

DMSP 
Avg 

7.736E+04 DMSP a 3150 #DMSPPts 32 

MLT 21.38 Fit 
Measured        ^^^^^^^| 
Avg                ^^^^^| 

2000 1000 410 

2000 NEL 
844 km 

9.149E+10 @DMSP 
Alt 

9.327E+10 8.075E+10 6.072E+10 

DNEL 2.035E+10 ±25 km 
Avg 

9.355E+10 8.102E+10 6.094E+10 

1000 NEL 
874 km 

8.029E+10 a 6.575E+09 4.873E+09 3.672E+09 

DNEL 2.701E+10 

Modified Error 

Table 51: Case M10-8 Modified Error 

Measured        ^^^^^^^H 
Avg                 ^^^^^| 

2000 1000 410 

2000 NEL 
844 km 

9.149E+10 @DMSP 
Alt 

9.090E+10 8.200E+10 4.935E+10 

DNEL 1.714E+10 ±25 km 
Avg 

9.122E+10 8.223E+10 4.957E+10 

1000 NEL 
874 km 

8.029E+10 a 6.718E+09 5.564E+09 4.322E+09 

DNEL 2.117E+10 
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Appendix B: Sondrestrom Comparison 

The following pages contain the numerical data used for the comparison of the 

Sondrestrom ISR measurements to the DMSP SSIES density measurements. Each page 

contains one conjunction's data and is titled using the naming convention from Section 3. 

Included are: 

1. DMSP satellite number 

2. | if the satellite is in an ascending node and j if in a descending node 

(This element will have a dark background if the satellite is eclipsed) 

3. Kp index 

4. F10.7 solar flux 

5. DMSP average and standard deviation (cm3) 

6. Number of DMSP data points within the one-degree circle 

7. DMSP magnetic local time 

8. Measured Sondrestrom average NEL and DNEL (m3) 

9. Number of Sondrestrom radar profiles used 

10. DNEL / NEL, Relative Error, and DMSP a / DMSP Avg 

The supplemental data section includes the tables, plus a plot of all the data used. 

It is available upon request from the author, the advisor, or the Engineering Physics 

Department at the Air Force Institute of Technology. 
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S2-1 
96 319 22.399 

Table 52: Case S2-1 

F12 T Kp 1.0 F10.7 70.0 

DMSP 
Avg 

2.422E+03 DMSPo 1081 #DMSPPts 6 

MLT 21.59 DMSP Alt 856 SON Alt 840 
SON 
NEL 

1.436E+11 SON 
DNEL 

1.074E+11 #SON 
Returns 

1 

DNEL 
NEL 

0.7479 Relative 
Error 

-0.9831 DMSP a 
DMSP Avg 

0.4463 

Table 53: CaseS3-l 

S3-1 
97 156 22.353 

F14 t Kp 1.0 F10.7 76.1 
DMSP 
Avg 

1.353E+04 DMSP a 514 #DMSPPts 6 

MLT 20.63 DMSP Alt 854 SON Alt 840 
SON 
NEL 

1.072E+11 SON 
DNEL 

3.766E+10 #SON 
Returns 

1 

DNEL 
NEL 

0.3513 Relative 
Error 

-0.8738 DMSP a 
DMSP Avg 

0.0380 
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S3-2 
97157 10.319 

Table 54: Case S3-2 

F13 i Kp 0.7 F10.7 76.4 

DMSP 
Avg 

1.223E+04 DMSP a 180 #DMSPPts 5 

MLT 8.04 DMSP Alt 856 SON Alt 840 
SON 
NEL 

1.654E+11 SON 
DNEL 

1.537E+12 #SON 
Returns 

2 

DNEL 
NEL 

9.2926 Relative 
Error 

-0.9261 DMSP a 
DMSP Avg 

0.0147 

Table 55: Case S5-1 

S5-1 
98146 13.339 

F14 i Kp 1.0 F10.7 94.9 
DMSP 
Avg 

1.945E+04 DMSPG 203 # DMSP Pts 5 

MLT 11.10 DMSP Alt 855 SON Alt 864 
SON 
NEL 

1.162E+11 SON 
DNEL 

1.208E+12 #SON 
Returns 

1 

DNEL 
NEL 

10.3959 Relative 
Error 

-0.8326 DMSP a 
DMSP Avg 

0.0104 

107 



www.manaraa.com

S6-1 
98 328 22.632 

Table 56: CaseS5-2 

F14 T Kp 2.7 F10.7 136.7 

DMSP 
Avg 

1.430E+04 DMSP a 3044 # DMSP Pts 6 

MLT 20.87 DMSP Alt 857 SON Alt 840 
SON 
NEL 

8.623E+11 SON 
DNEL 

2.620E+12 #SON 
Returns 

2 

DNEL 
NEL 

3.0384 Relative 
Error 

-0.9834 DMSP a 
DMSP Avg 

0.2129 

Table 57: Case S8-1 

S8-1 
99 343 19.952 

F13 t Kp 3.0 F10.7 151.5 
DMSP 
Avg 

8.281E+03 DMSP a 820 # DMSP Pts 4 

MLT 17.99 DMSP Alt 854 SON Alt 872 
SON 
NEL 

4.447E+10 SON 
DNEL 

1.009E+10 #SON 
Returns 

2 

DNEL 
NEL 

0.2269 Relative 
Error 

-0.8138 DMSP a 
DMSP Avg 

0.0990 
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S9-1 
00 007 10.655 

Table 58: Case S9-1 

F13 i Kp 2.0 F10.7 144.8 

DMSP 
Avg 

4.653E+03 DMSP a 672 #DMSPPts 3 

MLT 8.82 DMSP Alt 863 SON Alt 872 

SON 
NEL 

2.918E+10 SON 
DNEL 

7.018E+10 #SON 
Returns 

2 

DNEL 
NEL 

2.4051 Relative 
Error 

-0.8405 DMSP a 
DMSP Avg 

0.1444 
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Appendix C: Ionospheric Layers 

Table 59: Ionospheric Layers and Their Properties. From Tascione (1994) and Rees (1989) 
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Appendix D: The Air Force Research Laboratory Auroral Boundary Index 

(Equivalent Midnight Equatorward Boundary Regression) 

REGRESSIONS 

The complete set of F8, F9, FIO and Fll boundaries for 1991 to 1993 were used 

for creating regressions for every 1-hour local time bin. A least squares fit is done with 

the equatorward boundary and KP value at the time of boundary. This results in a series 

of slopes and intercepts that can then be used to project every boundary to an "equivalent 

midnight" boundary. The following is the calculation for the equatorward boundary. 

1) For an absolute latitude 'GLAT and an hourly local time bin 'LT' (1-24), a 

provisional KP 'TKP' is calculated as follows: 

TKP = (GLAT-INTERCEPT(LT))/SLOPE(LT)       (19) 

2) Then the equivalent midnight boundary EQLAT' can then be calculated as 

follows: 

EQLAT = INTERCEPT(24) + SLOPE(24)*TKP (20) 

NOTE: You may notice that MLT bins of 11 to 15 have no observations and no 

correlation. That is because the boundaries in this local time range do not correlate well 

with KP and are flagged accordingly. The regression values listed are based on 'hand' 

fitting. 
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Table 60: EQB Regression Statitics 

MLT #OBS SLOPE INTERCEPT CORRELATION 
1 1066. -1.65 66.54 -0.749 
2 1075. -1.45 66.35 -0.685 
3 1649. -1.64 66.01 -0.783 
4 2717. -1.82 66.97 -0.798 
5 7533. -1.79 66.70 -0.742 
6 15000. -1.81 67.62 -0.770 
7 9132. -1.65 68.23 -0.728 
8 6535. -1.47 69.11 -0.689 
9 7754. -1.34 69.73 -0.650 
10 1675. -1.24 69.99 -0.624 
11 -1. -1.19 70.50 0.000* 
12 -1. -1.15 71.00 0.000* 
13 -1. -1.10 72.50 0.000* 
14 -1. -1.05 73.00 0.000* 
15 -1. -1.10 73.50 0.000* 
16 2338. -1.15 74.02 -0.646 
17 4945. -1.45 73.64 -0.747 
18 6017. -1.48 72.43 -0.761 
19 11980. -1.74 71.79 -0.823 
20 12274. -1.85 70.88 -0.827 
21 12212. -1.73 69.74 -0.801 
22 6681. -2.02 69.34 -0.837 
23 5051. -1.93 67.90 -0.849 
24 3101. -1.71 66.78 -0.789 
(Rich, private communication, 19 October, 2000) 
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